Download 2d Nanoscale Heterostructured Materials Book PDF

Download full 2d Nanoscale Heterostructured Materials books PDF, EPUB, Tuebl, Textbook, Mobi or read online 2d Nanoscale Heterostructured Materials anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

2D Nanoscale Heterostructured Materials

2D Nanoscale Heterostructured Materials
  • Author : Satyabrata Jit,Santanu Das
  • Publisher :Unknown
  • Release Date :2020-03
  • Total pages :400
  • ISBN : 9780128176788
GET BOOK HERE

Summary : 2D Nanoscale Heterostructured Materials: Synthesis, Properties, and Applications assesses the current status and future prospects for 2D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.) that have already been contemplated for both low-end and high-end technological applications. The book offers an overview of the different synthesis techniques for 2D materials and their heterostructures, with a detailed explanation of the many potential future applications. It provides an informed overview and fundamentals properties related to the 2D Transition metal dichalcogenide materials and their heterostructures. The book helps researchers to understand the progress of this field and points the way to future research in this area.

2D Materials

2D Materials
  • Author : Phaedon Avouris,Tony F. Heinz,Tony Low
  • Publisher :Unknown
  • Release Date :2017-06-29
  • Total pages :523
  • ISBN : 9781107163713
GET BOOK HERE

Summary : Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures
  • Author : Eui-Hyeok Yang,Dibakar Datta,Junjun Ding,Grzegorz Hader
  • Publisher :Unknown
  • Release Date :2020-06-19
  • Total pages :534
  • ISBN : 9780128184769
GET BOOK HERE

Summary : Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

Two-dimensional Materials

Two-dimensional Materials
  • Author : Pramoda Kumar Nayak
  • Publisher :Unknown
  • Release Date :2016-08-31
  • Total pages :280
  • ISBN : 9789535125549
GET BOOK HERE

Summary : There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Integration of 2D Materials for Electronics Applications

Integration of 2D Materials for Electronics Applications
  • Author : Filippo Giannazzo,Samuel Lara Avila,Jens Eriksson,Sushant Sonde
  • Publisher :Unknown
  • Release Date :2019-02-13
  • Total pages :264
  • ISBN : 9783038976066
GET BOOK HERE

Summary : This book is a printed edition of the Special Issue "Integration of 2D Materials for Electronics Applications" that was published in Crystals

Inorganic Two-dimensional Nanomaterials

Inorganic Two-dimensional Nanomaterials
  • Author : Changzheng Wu
  • Publisher :Unknown
  • Release Date :2017-08-22
  • Total pages :428
  • ISBN : 9781782624653
GET BOOK HERE

Summary : Inorganic 2D nanomaterials, or inorganic graphene analogues, are gaining great attention due to their unique properties and potential energy applications. They contain ultrathin nanosheet morphology with one-dimensional confinement, but unlike pure carbon graphene, inorganic two-dimensional nanomaterials have a more abundant elemental composition and can form different crystallographic structures. These properties contribute to their unique chemical reaction activity, tunable physical properties and facilitate applications in the field of energy conversion and storage. Inorganic Two-dimensional Nanomaterials details the development of the nanostructures from computational simulation and theoretical understanding to their synthesis and characterization. Individual chapters then cover different applications of the materials as electrocatalysts, flexible supercapicitors, flexible lithium ion batteries and thermoelectrical devices. The book provides a comprehensive overview of the field for researchers working in the areas of materials chemistry, physics, energy and catalysis.

2D Nanomaterials for Energy Applications

2D Nanomaterials for Energy Applications
  • Author : Spyridon Zafeiratos
  • Publisher :Unknown
  • Release Date :2019-11-22
  • Total pages :352
  • ISBN : 9780128168899
GET BOOK HERE

Summary : 2D Nanomaterials for Energy Applications: Graphene and Beyond discusses the current state-of-the art of 2D nanomaterials used in energy-related applications. Sections cover nanogenerators, hydrogen storage and theoretical design. Each chapter focuses on a different energy application, thus allowing readers to gain a greater understanding of the most promising 2D materials in the field. The book's ultimate goal lies in describing how each energy technology is beneficial, hence it provides a valuable reference source for materials scientists and engineers. The physical and chemical properties of 2D materials can be effectively tuned through different strategies, such as controlling dimensions, the crystallographic structure and defects, or doping with heteroatoms. This flexibility facilitates the design of 2D materials for dedicated applications in the field of energy conversion and storage. Offers a single source for the major practical applications of 2D materials in the field of energy conversion and storage Explores how 2D materials are being used to create new, more efficient industrial energy products and devices Compares a variety of 2D materials, showing how the properties of a range of these materials make them beneficial for specific energy applications

Nanoscale Devices Consisting of Heterostructures of Carbon Nanotubes and Two-dimensional Layered Materials

Nanoscale Devices Consisting of Heterostructures of Carbon Nanotubes and Two-dimensional Layered Materials
  • Author : Mohsen Nasseri
  • Publisher :Unknown
  • Release Date :2018
  • Total pages :125
  • ISBN : OCLC:1239323221
GET BOOK HERE

Summary :

Fundamentals and Sensing Applications of 2D Materials

Fundamentals and Sensing Applications of 2D Materials
  • Author : Chandra Sekhar Rout,Dattatray Late,Hywel Morgan
  • Publisher :Unknown
  • Release Date :2019-06-15
  • Total pages :512
  • ISBN : 9780081025789
GET BOOK HERE

Summary : Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials

Chalcogenide

Chalcogenide
  • Author : Xinyu Liu,Sanghoon Lee,Jacek K. Furdyna,Tengfei Luo,Yong-Hang Zhang
  • Publisher :Unknown
  • Release Date :2019-11-14
  • Total pages :398
  • ISBN : 9780081027363
GET BOOK HERE

Summary : Chalcogenide: From 3D to 2D and Beyond reviews graphene-like 2D chalcogenide systems that include topological insulators, interesting thermoelectric structures, and structures that exhibit a host of spin phenomena that are unique to 2D and lower-dimensional geometries. The book describes state-of-the-art materials in growth and fabrication, magnetic, electronic and optical characterization, as well as the experimental and theoretical aspects of this family of materials. Bulk chalcogenides, chalcogenide films, their heterostructures and low-dimensional chalcogenide-based quantum structures are discussed. Particular attention is paid to findings that are relevant to the continued search for new physical phenomena and new functionalities. Finally, the book covers the enormous opportunities that have emerged as it has become possible to achieve lower-dimensional chalcogenide structures by epitaxial techniques. Provides readers with foundational information on the materials growth, fabrication, magnetic, electronic and optical characterization of chalcogenide materials Discusses not only bulk chalcogenides and chalcogenide thin films, but also two-dimensional chalcogenide materials systems Reviews the most important applications in optoelectronics, photovoltaics and thermoelectrics

Two-dimensional Materials for Photodetector

Two-dimensional Materials for Photodetector
  • Author : Pramoda Kumar Nayak
  • Publisher :Unknown
  • Release Date :2018-04-04
  • Total pages :242
  • ISBN : 9789535139515
GET BOOK HERE

Summary : Atomic thin two-dimensional (2D) materials are the thinnest forms of materials to ever occur in nature and have the potential to dramatically alter and revolutionize our material world. Some of the unique properties of these materials including wide photoresponse wavelength, passivated surfaces, strong interaction with incident light, and high mobility have created tremendous interest in photodetector application. This book provides a comprehensive state-of-the-art knowledge about photodetector technology in the range visible to infrared region using various 2D materials including graphene, transition metal dichalcogenides, III-V semiconductor, and so on. It consists of 10 chapters contributed by a team of experts in this exciting field. We believe that this book will provide new opportunities and guidance for the development of next-generation 2D photodetector.

Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications

Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications
  • Author : Luis L. Bonilla,Efthimios Kaxiras,Roderick Melnik
  • Publisher :Unknown
  • Release Date :2018-08-23
  • Total pages :314
  • ISBN : 9783319765990
GET BOOK HERE

Summary : This volume gathers selected contributions from the participants of the Banff International Research Station (BIRS) workshop Coupled Mathematical Models for Physical and Biological Nanoscale Systems and their Applications, who explore various aspects of the analysis, modeling and applications of nanoscale systems, with a particular focus on low dimensional nanostructures and coupled mathematical models for their description. Due to the vastness, novelty and complexity of the interfaces between mathematical modeling and nanoscience and nanotechnology, many important areas in these disciplines remain largely unexplored. In their efforts to move forward, multidisciplinary research communities have come to a clear understanding that, along with experimental techniques, mathematical modeling and analysis have become crucial to the study, development and application of systems at the nanoscale. The conference, held at BIRS in autumn 2016, brought together experts from three different communities working in fields where coupled mathematical models for nanoscale and biosystems are especially relevant: mathematicians, physicists (both theorists and experimentalists), and computational scientists, including those dealing with biological nanostructures. Its objectives: summarize the state-of-the-art; identify and prioritize critical problems of major importance that require solutions; analyze existing methodologies; and explore promising approaches to addressing the challenges identified. The contributions offer up-to-date introductions to a range of topics in nano and biosystems, identify important challenges, assess current methodologies and explore promising approaches. As such, this book will benefit researchers in applied mathematics, as well as physicists and biologists interested in coupled mathematical models and their analysis for physical and biological nanoscale systems that concern applications in biotechnology and medicine, quantum information processing and optoelectronics.

Low-Dimensional and Nanostructured Materials and Devices

Low-Dimensional and Nanostructured Materials and Devices
  • Author : Hilmi Ünlü,Norman J. M. Horing,Jaroslaw Dabrowski
  • Publisher :Unknown
  • Release Date :2015-12-01
  • Total pages :674
  • ISBN : 9783319253404
GET BOOK HERE

Summary : This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.

Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy

Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy
  • Author : Anatoli Korkin,Stephen Goodnick,Robert Nemanich
  • Publisher :Unknown
  • Release Date :2015-08-26
  • Total pages :282
  • ISBN : 9783319186337
GET BOOK HERE

Summary : This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions; new materials are being introduced into electronics manufacturing at an unprecedented rate; and alternative technologies to mainstream CMOS are evolving. The low cost of natural energy sources have created economic barriers to the development of alternative and more efficient solar energy systems, fuel cells and batteries. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors,quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.

Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications

Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications
  • Author : Mohammad Karbalaei Akbari,Serge Zhuiykov
  • Publisher :Unknown
  • Release Date :2020-07-28
  • Total pages :320
  • ISBN : 9781000072525
GET BOOK HERE

Summary : Offering perspective on both the scientific and engineering aspects of 2D semiconductors, Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications discusses how to successfully engineer 2D materials for practical applications. It also covers several novel topics regarding 2D semiconductors which have not yet been discussed in any other publications. Features: Provides comprehensive information and data about wafer-scale deposition of 2D semiconductors, ranging from scientific discussions up to the planning of experiments and reliability testing of the fabricated samples Precisely discusses wafer-scale ALD and CVD of 2D semiconductors and investigates various aspects of deposition techniques Covers the new group of 2D materials synthesized from surface oxide of liquid metals and also explains the device fabrication and post-treatment of these 2D nanostructures Addresses a wide range of scientific and practical applications of 2D semiconductors and electronic and optoelectronic devices based on these nanostructures Offers novel coverage of 2D heterostructures and heterointerfaces and provides practical information about fabrication and application of these heterostructures Introduces the latest advancement in fabrication of novel memristors, artificial synapses and sensorimotor devices based on 2D semiconductors This work offers practical information valuable for engineering applications that will appeal to researchers, academics, and scientists working with and interested in developing an array of semiconductor electronic devices.

Advances in Memristor Neural Networks

Advances in Memristor Neural Networks
  • Author : Calin Ciufudean
  • Publisher :Unknown
  • Release Date :2018-10-03
  • Total pages :124
  • ISBN : 9781789841152
GET BOOK HERE

Summary : Nowadays, scientific research deals with alternative solutions for creating non-traditional computing systems, such as neural network architectures where the stochastic nature and live dynamics of memristive models play a key role. The features of memristors make it possible to direct processing and analysis of both biosystems and systems driven by artificial intelligence, as well as develop plausible physical models of spiking neural networks with self-organization. This book deals with advanced applications illustrating these concepts, and delivers an important contribution for the achievement of the next generation of intelligent hybrid biostructures. Different modeling and simulation tools can deliver an alternative to funding the theoretical approach as well as practical implementation of memristive systems.

2D Materials and Van der Waals Heterostructures

2D Materials and Van der Waals Heterostructures
  • Author : Antonio Di Bartolomeo
  • Publisher :Unknown
  • Release Date :2020-06-23
  • Total pages :170
  • ISBN : 9783039287680
GET BOOK HERE

Summary : The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.

Spintronic 2D Materials

Spintronic 2D Materials
  • Author : Wenqing Liu,Yongbing Xu
  • Publisher :Unknown
  • Release Date :2019-06-15
  • Total pages :400
  • ISBN : 9780081021545
GET BOOK HERE

Summary : Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book. Discusses the fundamentals and applications of spintronics of 2D materials, such as graphene, topological insulators and transition metal dichalcogenides Includes an in-depth look at each materials system, from material growth, device fabrication and characterization techniques Presents the latest solutions on key challenges, such as the spin lifetime of 2D materials, spin-injection efficiency, the potential proximity effects, and much more

Semiconductor Nanowires

Semiconductor Nanowires
  • Author : J Arbiol,Q Xiong
  • Publisher :Unknown
  • Release Date :2015-03-31
  • Total pages :572
  • ISBN : 9781782422631
GET BOOK HERE

Summary : Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. Explores a selection of advanced materials for semiconductor nanowires Outlines key techniques for the property assessment and characterization of semiconductor nanowires Covers a broad range of applications across a number of fields

Nanomechanical and Nanoelectromechanical Phenomena in 2D Atomic Crystals

Nanomechanical and Nanoelectromechanical Phenomena in 2D Atomic Crystals
  • Author : Nicholas D. Kay
  • Publisher :Unknown
  • Release Date :2017-11-27
  • Total pages :122
  • ISBN : 9783319701813
GET BOOK HERE

Summary : This thesis introduces a unique approach of applying atomic force microscopy to study the nanoelectromechanical properties of 2D materials, providing high-resolution computer-generated imagery (CGI) and diagrams to aid readers’ understanding and visualization. The isolation of graphene and, shortly after, a host of other 2D materials has attracted a great deal of interest in the scientific community for both their range of extremely desirable and their record-breaking properties. Amongst these properties are some of the highest elastic moduli and tensile strengths ever observed in nature. The work, which was undertaken at Lancaster University’s Physics department in conjunction with the University of Manchester and the National Physical Laboratory, offers a new approach to understanding the nanomechanical and nanoelectromechanical properties of 2D materials by utilising the nanoscale and nanosecond resolution of ultrasonic force and heterodyne force microscopy (UFM and HFM) – both contact mode atomic force microscopy (AFM) techniques. Using this approach and developing several other new techniques the authors succeeded in probing samples’ subsurface and mechanical properties, which would otherwise remain hidden. Lastly, by using a new technique, coined electrostatic heterodyne force microscopy (E-HFM), the authors were able to observe nanoscale electromechanical vibrations with a nanometre and nanosecond resolution, in addition to probing the local electrostatic environment of devices fabricated from 2D materials.

Novel Compound Semiconductor Nanowires

Novel Compound Semiconductor Nanowires
  • Author : Fumitaro Ishikawa,Irina Buyanova
  • Publisher :Unknown
  • Release Date :2017-10-17
  • Total pages :528
  • ISBN : 9781315340722
GET BOOK HERE

Summary : One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.