Download Applications Of Nanofluid For Heat Transfer Enhancement Book PDF

Download full Applications Of Nanofluid For Heat Transfer Enhancement books PDF, EPUB, Tuebl, Textbook, Mobi or read online Applications Of Nanofluid For Heat Transfer Enhancement anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Applications of Nanofluid for Heat Transfer Enhancement

Applications of Nanofluid for Heat Transfer Enhancement
  • Author : Mohsen Sheikholeslami,Davood Domairry Ganji
  • Publisher :Unknown
  • Release Date :2017-02-26
  • Total pages :618
  • ISBN : 9780128123980
GET BOOK HERE

Summary : Applications of Nanofluid for Heat Transfer Enhancement explores recent progress in computational fluid dynamic and nonlinear science and its applications to nanofluid flow and heat transfer. The opening chapters explain governing equations and then move on to discussions of free and forced convection heat transfers of nanofluids. Next, the effect of nanofluid in the presence of an electric field, magnetic field, and thermal radiation are investigated, with final sections devoted to nanofluid flow in porous media and application of nanofluid for solidification. The models discussed in the book have applications in various fields, including mathematics, physics, information science, biology, medicine, engineering, nanotechnology, and materials science. Presents the latest information on nanofluid free and force convection heat transfer, of nanofluid in the presence of thermal radiation, and nanofluid in the presence of an electric field Provides an understanding of the fundamentals in new numerical and analytical methods Includes codes for each modeling method discussed, along with advice on how to best apply them

Heat Transfer Enhancement with Nanofluids

Heat Transfer Enhancement with Nanofluids
  • Author : Vincenzo Bianco,Oronzio Manca,Sergio Nardini,Kambiz Vafai
  • Publisher :Unknown
  • Release Date :2015
  • Total pages :229
  • ISBN : 0429171838
GET BOOK HERE

Summary :

Heat Transfer Enhancement with Nanofluids

Heat Transfer Enhancement with Nanofluids
  • Author : Vincenzo Bianco,Oronzio Manca,Sergio Nardini,Kambiz Vafai
  • Publisher :Unknown
  • Release Date :2015-04-01
  • Total pages :481
  • ISBN : 9781482254020
GET BOOK HERE

Summary : Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from across the globe, Heat Transfer Enhancement with Nanofluids presents a complete understanding of the application of nanofluids in a range of fields and explains the main techniques used in the analysis of nanofuids flow and heat transfer. Providing a rigorous framework to help readers develop devices employing nanofluids, the book addresses basic topics that include the analysis and measurements of thermophysical properties, convection, and heat exchanger performance. It explores the issues of convective instabilities, nanofluids in porous media, and entropy generation in nanofluids. The book also contains the latest advancements, innovations, methodologies, and research on the subject. Presented in 16 chapters, the text: Discusses the possible mechanisms of thermal conduction enhancement Reviews the results of a theoretical analysis determining the anomalous enhancement of heat transfer in nanofluid flow Assesses different approaches modeling the thermal conductivity enhancement of nanofluids Focuses on experimental methodologies used to determine the thermophysical properties of nanofluids Analyzes forced convection heat transfer in nanofluids in both laminar and turbulent convection Highlights the application of nanofluids in heat exchangers and microchannels Discusses the utilization of nanofluids in porous media Introduces the boiling of nanofluids Treats pool and flow boiling by analyzing the effect of nanoparticles on these complex phenomena Indicates future research directions to further develop this area of knowledge, and more Intended as a reference for researchers and engineers working in the field, Heat Transfer Enhancement with Nanofluids presents advanced topics that detail the strengths, weaknesses, and potential future developments in nanofluids heat transfer.

Heat Transfer Enhancement Using Nanofluid Flow in Microchannels

Heat Transfer Enhancement Using Nanofluid Flow in Microchannels
  • Author : Davood Domairry Ganji,Amir Malvandi
  • Publisher :Unknown
  • Release Date :2016-06-11
  • Total pages :376
  • ISBN : 9780323431781
GET BOOK HERE

Summary : Heat Transfer Enhancement Using Nanofluid Flow in Microchannels: Simulation of Heat and Mass Transfer focuses on the numerical simulation of passive techniques, and also covers the applications of external forces on heat transfer enhancement of nanofluids in microchannels. Economic and environmental incentives have increased efforts to reduce energy consumption. Heat transfer enhancement, augmentation, or intensification are the terms that many scientists employ in their efforts in energy consumption reduction. These can be divided into (a) active techniques which require external forces such as magnetic force, and (b) passive techniques which do not require external forces, including geometry refinement and fluid additives. Gives readers the knowledge they need to be able to simulate nanofluids in a wide range of microchannels and optimise their heat transfer characteristics Contains real-life examples, mathematical procedures, numerical algorithms, and codes to allow readers to easily reproduce the methodologies covered, and to understand how they can be applied in practice Presents novel applications for heat exchange systems, such as entropy generation minimization and figures of merit, allowing readers to optimize the techniques they use Focuses on the numerical simulation of passive techniques, and also covers the applications of external forces on heat transfer enhancement of nanofluids in microchannels

Nanofluid in Heat Exchanges for Mechanical Systems

Nanofluid in Heat Exchanges for Mechanical Systems
  • Author : Zhixiong Li,Ahmad Shafee,M. Jafaryar,Iskander Tlili
  • Publisher :Unknown
  • Release Date :2020-06
  • Total pages :229
  • ISBN : 9780128219232
GET BOOK HERE

Summary : Heat transfer enhancement techniques are widely used in many applications in the heating process to make possible reduction in weight and size or enhance the performance of heat exchanges. These techniques are classified as active and passive techniques. The active technique requires external power while the passive technique does not need any external power. The passive techniques are valuable compared with the active techniques because the swirl inserts manufacturing process is simple and can be easily employed in an existing heat exchange. This book shows how the finite volume method is used to simulate various applications of heat exchanges. First, the heat transfer enhancement methods are introduced in detail. Following this, hydrothermal analysis and second law approaches are presented for heat exchanges. The melting process in heat exchanges is also covered. Finally, the influence of variable magnetic field on performance of heat exchange is discussed. This is an important reference source for materials scientists and mechanical engineers who are looking to understand the main ways that nanofluid flow is simulated, and what the major application are.

Nanofluid Heat Transfer Enhancement in Engineering Applications

Nanofluid Heat Transfer Enhancement in Engineering Applications
  • Author : Surya Kumar Saripella
  • Publisher :Unknown
  • Release Date :2007
  • Total pages :196
  • ISBN : OCLC:261113187
GET BOOK HERE

Summary :

Nanofluids and Their Engineering Applications

Nanofluids and Their Engineering Applications
  • Author : K.R.V. Subramanian,Tubati Nageswara Rao,Avinash Balakrishnan
  • Publisher :Unknown
  • Release Date :2019-06-18
  • Total pages :498
  • ISBN : 9780429886997
GET BOOK HERE

Summary : Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment

Nanofluids

Nanofluids
  • Author : Sarit K. Das,Stephen U. Choi,Wenhua Yu,T. Pradeep
  • Publisher :Unknown
  • Release Date :2007-12-04
  • Total pages :485
  • ISBN : 9780470180686
GET BOOK HERE

Summary : Introduction to nanofluids--their properties, synthesis, characterization, and applications Nanofluids are attracting a great deal of interest with their enormous potential to provide enhanced performance properties, particularly with respect to heat transfer. In response, this text takes you on a complete journey into the science and technology of nanofluids. The authors cover both the chemical and physical methods for synthesizing nanofluids, explaining the techniques for creating a stable suspension of nanoparticles. You get an overview of the existing models and experimental techniques used in studying nanofluids, alongside discussions of the challenges and problems associated with some of these models. Next, the authors set forth and explain the heat transfer applications of nanofluids, including microelectronics, fuel cells, and hybrid-powered engines. You also get an introduction to possible future applications in large-scale cooling and biomedicine. This book is the work of leading pioneers in the field, one of whom holds the first U.S. patent for nanofluids. They have combined their own first-hand knowledge with a thorough review of theliterature. Among the key topics are: * Synthesis of nanofluids, including dispersion techniques and characterization methods * Thermal conductivity and thermo-physical properties * Theoretical models and experimental techniques * Heat transfer applications in microelectronics, fuel cells, and vehicle engines This text is written for researchers in any branch of science and technology, without any prerequisite.It therefore includes some basic information describing conduction, convection, and boiling of nanofluids for those readers who may not have adequate background in these areas. Regardless of your background, you'll learn to develop nanofluids not only as coolants, but also for a host ofnew applications on the horizon.

Hybrid Nanofluids for Convection Heat Transfer

Hybrid Nanofluids for Convection Heat Transfer
  • Author : Hafiz Muhammad Ali
  • Publisher :Unknown
  • Release Date :2020-05-15
  • Total pages :300
  • ISBN : 9780128192818
GET BOOK HERE

Summary : Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids Reviews parameter selection and property measurement techniques for thermal performance calibration Explores the use of predictive mathematical techniques for experimental properties

Nanofluid Boiling

Nanofluid Boiling
  • Author : Ali Kosar,Abdolali Sadaghiani
  • Publisher :Unknown
  • Release Date :2021-06-15
  • Total pages :304
  • ISBN : 0128169230
GET BOOK HERE

Summary : Nanofluid Boiling presents valuable insights into boiling heat transfer mechanisms, offering state-of-the-art techniques for overcoming obstacles against nanofluid applications. In addition, the book points out emerging industrial applications and guides researchers and engineers in their research and design efforts. In addition, recommendations on future research directions and the design of systems involving nanofluids are presented at the end of each chapter. The book's authors comprehensively cover mechanisms, parametric effects and enhancement techniques in the boiling of nanofluids, providing updated, detailed information about recent developments and findings. Gives insights into nanofluid boiling heat transfer mechanisms Offers state-of-the-art techniques for overcoming challenges and difficulties in the applications of nanofluids Presents the most updated information about nanofluid boiling heat transfer, mechanisms of heat transfer, and critical heat flux enhancements Focuses on parametric effects, such as nanofluid properties (size, concentration, nanoparticle type), preparation methods on heat transfer and critical heat flux mechanisms, bubble dynamics, flow patterns and pressure drop

Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer

Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer
  • Author : Mohsen Sheikholeslami
  • Publisher :Unknown
  • Release Date :2018-09-14
  • Total pages :780
  • ISBN : 9780128141533
GET BOOK HERE

Summary : Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer discusses this powerful numerical method that uses the advantages of both finite volume and finite element methods for the simulation of multi-physics problems in complex geometries, along with its applications in heat transfer and nanofluid flow. The book applies these methods to solve various applications of nanofluid in heat transfer enhancement. Topics covered include magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, melting heat transfer, and nanofluid flow in porous media, all of which are demonstrated with case studies. This is an important research reference that will help readers understand the principles and applications of this novel method for the analysis of nanofluid behavior in a range of external forces. Explains governing equations for nanofluid as working fluid Includes several CVFEM codes for use in nanofluid flow analysis Shows how external forces such as electric fields and magnetic field effects nanofluid flow

Application of Titanium Dioxide

Application of Titanium Dioxide
  • Author : Magdalena Janus
  • Publisher :Unknown
  • Release Date :2017-07-26
  • Total pages :240
  • ISBN : 9789535134299
GET BOOK HERE

Summary : Titanium dioxide is mainly used as a pigment and photocatalyst. It is possible to find it in food, cosmetics, building materials, electric devices, and others. This book contains chapters about application of titanium dioxide in different branches of economy such as the agriculture, the food industry, the medicine, the cosmetics, the water treatment technologies, and the semiconductors.

Heat Transfer

Heat Transfer
  • Author : Salim Newaz Kazi
  • Publisher :Unknown
  • Release Date :2015-07-29
  • Total pages :406
  • ISBN : 9789535121466
GET BOOK HERE

Summary : In the wake of energy crisis due to rapid growth of industries, the efficient heat transfer could play a vital role in energy saving. Industries, household equipment, transportation, offices, etc., all are dependent on heat exchanging equipment. Considering this, the book has incorporated different chapters on heat transfer phenomena, analytical and experimental heat transfer investigations, heat transfer enhancement and applications.

Electronics Cooling

Electronics Cooling
  • Author : S. M. Sohel Murshed
  • Publisher :Unknown
  • Release Date :2016-06-15
  • Total pages :182
  • ISBN : 9789535124054
GET BOOK HERE

Summary : Featuring contributions from the renowned researchers and academicians in the field, this book covers key conventional and emerging cooling techniques and coolants for electronics cooling. It includes following thematic topics: - Cooling approaches and coolants - Boiling and phase change-based technologies - Heat pipes-based cooling - Microchannels cooling systems - Heat loop cooling technology - Nanofluids as coolants - Theoretical development for the junction temperature of package chips. This book is intended to be a reference source and guide to researchers, engineers, postgraduate students, and academicians in the fields of thermal management and cooling technologies as well as for people in the electronics and semiconductors industries.

Microfluidics and Nanofluidics

Microfluidics and Nanofluidics
  • Author : Mohsen Sheikholeslami Kandelousi
  • Publisher :Unknown
  • Release Date :2018-08-22
  • Total pages :318
  • ISBN : 9781789235401
GET BOOK HERE

Summary : In the present book, various applications of microfluidics and nanofluidics are introduced. Microfluidics and nanofluidics span a broad array of disciplines including mechanical, materials, and electrical engineering, surface science, chemistry, physics and biology. Also, this book deals with transport and interactions of colloidal particles and biomolecules in microchannels, which have great importance to many microfluidic applications, such as drug delivery in life science, microchannel heat exchangers in electronic cooling, and food processing industry. Furthermore, this book focuses on a detailed description of the thermal transport behavior, challenges and implications that involve the development and use of HTFs under the influence of atomistic-scale structures and industrial applications.

Nanofluid Heat and Mass Transfer in Engineering Problems

Nanofluid Heat and Mass Transfer in Engineering Problems
  • Author : Mohsen Sheikholeslami Kandelousi
  • Publisher :Unknown
  • Release Date :2017-03-15
  • Total pages :284
  • ISBN : 9789535130079
GET BOOK HERE

Summary : In the present book, nanofluid heat and mass transfer in engineering problems are investigated. The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment heat transfer. Newly, innovative nanometer-sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer-sized particle dispersion are called "nanofluids." At first, nanofluid heat and mass transfer over a stretching sheet are provided with various boundary conditions. Problems faced for simulating nanofluids are reported. Also, thermophysical properties of various nanofluids are presented. Nanofluid flow and heat transfer in the presence of magnetic field are investigated. Furthermore, applications for electrical and biomedical engineering are provided. Besides, applications of nanofluid in internal combustion engine are provided.

Nanoparticle Heat Transfer and Fluid Flow

Nanoparticle Heat Transfer and Fluid Flow
  • Author : W. J. Minkowycz,E M Sparrow,J. P. Abraham
  • Publisher :Unknown
  • Release Date :2016-04-19
  • Total pages :342
  • ISBN : 9781439861950
GET BOOK HERE

Summary : Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to materials properties, and addresses aspects that are essential for further progress in the field, including numerical quantification, modeling, simulation, and presentation. Topics include: A broad review of nanofluid applications, including industrial heat transfer, biomedical engineering, electronics, energy conversion, membrane filtration, and automotive An overview of thermofluids and their importance in biomedical applications and heat-transfer enhancement A deeper look at biomedical applications such as nanoparticle hyperthermia treatments for cancers Issues in energy conversion from dispersed forms to more concentrated and utilizable forms Issues in nanofluid properties, which are less predictable and less repeatable than those of other media that participate in fluid flow and heat transfer Advances in computational fluid dynamic (CFD) modeling of membrane filtration at the microscale The role of nanofluids as a coolant in microchannel heat transfer for the thermal management of electronic equipment The potential enhancement of natural convection due to nanoparticles Examining key topics and applications in nanoscale heat transfer and fluid flow, this comprehensive book presents the current state of the art and a view of the future. It offers a valuable resource for experts as well as newcomers interested in developing innovative modeling and numerical simulation in this growing field.

Nanofluids

Nanofluids
  • Author : Mohammad Hatami,Dengwei Jing
  • Publisher :Unknown
  • Release Date :2020-01-15
  • Total pages :368
  • ISBN : 9780081029343
GET BOOK HERE

Summary : Nanofluids: Mathematical, Numerical and Experimental Analysis provides a combined treatment of the numerical and experimental aspects of this crucial topic. Mathematical methods such as the weighted residual method and perturbation techniques, as well as numerical methods such as Finite Element and Lattice-Boltzmann are addressed, along with experimental methods in nanofluid analysis. The effects of magnetic field, electric field and solar radiation on the optical properties and synthesis of nanofluid flow are examined and discussed as well. This book also functions as a comprehensive review of recent progress in nanofluids analysis and its application in different engineering sciences. This book is ideal for all readers in industry or academia, along with anyone interested in nanofluids for theoretical or experimental design reasons. Explains the governing equations in which magnetic or electric fields are applied Gives instructions on how to confirm numerical modeling results by comparing with experimental outcomes Provides detailed information on the governing equations where nanofluids are used as a working fluid

Thermofluid Modeling for Energy Efficiency Applications

Thermofluid Modeling for Energy Efficiency Applications
  • Author : M. Masud K. Khan,Nur M.S Hassan
  • Publisher :Unknown
  • Release Date :2015-09-01
  • Total pages :360
  • ISBN : 9780128025895
GET BOOK HERE

Summary : Thermofluid Modeling for Sustainable Energy Applications provides a collection of the most recent, cutting-edge developments in the application of fluid mechanics modeling to energy systems and energy efficient technology. Each chapter introduces relevant theories alongside detailed, real-life case studies that demonstrate the value of thermofluid modeling and simulation as an integral part of the engineering process. Research problems and modeling solutions across a range of energy efficiency scenarios are presented by experts, helping users build a sustainable engineering knowledge base. The text offers novel examples of the use of computation fluid dynamics in relation to hot topics, including passive air cooling and thermal storage. It is a valuable resource for academics, engineers, and students undertaking research in thermal engineering. Includes contributions from experts in energy efficiency modeling across a range of engineering fields Places thermofluid modeling and simulation at the center of engineering design and development, with theory supported by detailed, real-life case studies Features hot topics in energy and sustainability engineering, including thermal storage and passive air cooling Provides a valuable resource for academics, engineers, and students undertaking research in thermal engineering

Engineering Applications of Nanotechnology

Engineering Applications of Nanotechnology
  • Author : Viswanatha Sharma Korada,Nor Hisham B Hamid
  • Publisher :Unknown
  • Release Date :2017-01-09
  • Total pages :334
  • ISBN : 9783319297613
GET BOOK HERE

Summary : This book focuses on the use of nanotechnology in several fields of engineering. Among others, the reader will find valuable information as to how nanotechnology can aid in extending the life of component materials exposed to corrosive atmospheres, in thermal fluid energy conversion processes, anti-reflection coatings on photovoltaic cells to yield enhanced output from solar cells, in connection with friction and wear reduction in automobiles, and buoyancy suppression in free convective heat transfer. Moreover, this unique resource presents the latest research on nanoscale transport phenomena and concludes with a look at likely future trends.

Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method

Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method
  • Author : Mohsen Sheikholeslami,Davood Domairry Ganji
  • Publisher :Unknown
  • Release Date :2015-02-27
  • Total pages :236
  • ISBN : 9780081003619
GET BOOK HERE

Summary : Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro-magnetic techniques in materials and bioengineering, and convective flow in fluid-saturated porous media. The topics are of practical interest to engineering, geothermal science, and medical and biomedical sciences. Introduces a detailed explanation of Control Volume Finite Element Method (CVFEM) to provide for a complete understanding of the fundamentals Demonstrates applications of this method in various fields, such as nanofluid flow and heat transfer, MHD, FHD, and porous media Offers complete familiarity with the governing equations in which nanofluid is used as a working fluid Discusses the governing equations of MHD and FHD Provides a number of extensive examples throughout the book Bonus appendix with sample computer code