Download Critical Excitation Methods In Earthquake Engineering Book PDF

Download full Critical Excitation Methods In Earthquake Engineering books PDF, EPUB, Tuebl, Textbook, Mobi or read online Critical Excitation Methods In Earthquake Engineering anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Critical Excitation Methods in Earthquake Engineering

Critical Excitation Methods in Earthquake Engineering
  • Author : Izuru Takewaki
  • Publisher :Unknown
  • Release Date :2013-06-03
  • Total pages :400
  • ISBN : 9780080994291
GET BOOK HERE

Summary : After the March 11, 2011, earthquake in Japan, there is overwhelming interest in worst-case analysis, including the critical excitation method. Nowadays, seismic design of structures performed by any seismic code is based on resisting previous natural earthquakes. Critical Excitation Methods in Earthquake Engineering, 2e, develops a new framework for modeling design earthquake loads for inelastic structures. The 2e, includes three new chapters covering the critical excitation problem for multi-component input ground motions, and that for elastic-plastic structures in a more direct way are incorporated and discussed in more depth. Finally, the problem of earthquake resilience of super high-rise buildings is discussed from broader viewpoints. Solves problems of earthquake resilience of super high-rise buildings Three new chapters on critical excitation problem for multi-component input ground motions Includes numerical examples of one and two-story models

Earthquake Engineering

Earthquake Engineering
  • Author : Shamim A. Sheikh,S. M. Uzumeri
  • Publisher :Unknown
  • Release Date :1991-12
  • Total pages :834
  • ISBN : 1487581920
GET BOOK HERE

Summary : Countless lives have been saved as a result of recent strides in earthquake engineering and related sciences. This trend has been furthered by the work of the Canadian national Committee on Earthquake Engineering which has, over the past twenty years, provided specialists with a forum for exploring new approaches to the problem. Engineers, scientists, researchers, geologists, seismologists, and other professionals have shared research and experience at the committee's conferences. The sixth of these, held in June 1991, is documented in this volume. Three keynote papers provide the overall focuses for the volume. Each deals with one of the three major areas in the field: structures, in a paper on design developments in high-rise design and construction in Japan; geotechnical engineering, in a discussion of the effects of site conditions on ground motions; and seismology, in an account of the development of phased strong-motion time-histories for structures with multiple supports. Shorter papers fall into three broad areas: response analysis and design of structural components; the interaction of seismicity, mitigation, soil response, and social structure; and seismic codes and structures. This conference, along with other similar events throughout the world, has contributed significantly towards understanding various phenomena needed for building safe, reliable, and economical structures that can meet the challenges presented by the forces of nature.

Structural Dynamics of Earthquake Engineering

Structural Dynamics of Earthquake Engineering
  • Author : S Rajasekaran
  • Publisher :Unknown
  • Release Date :2009-05-30
  • Total pages :896
  • ISBN : 9781845695736
GET BOOK HERE

Summary : Given the risk of earthquakes in many countries, knowing how structural dynamics can be applied to earthquake engineering of structures, both in theory and practice, is a vital aspect of improving the safety of buildings and structures. It can also reduce the number of deaths and injuries and the amount of property damage. The book begins by discussing free vibration of single-degree-of-freedom (SDOF) systems, both damped and undamped, and forced vibration (harmonic force) of SDOF systems. Response to periodic dynamic loadings and impulse loads are also discussed, as are two degrees of freedom linear system response methods and free vibration of multiple degrees of freedom. Further chapters cover time history response by natural mode superposition, numerical solution methods for natural frequencies and mode shapes and differential quadrature, transformation and Finite Element methods for vibration problems. Other topics such as earthquake ground motion, response spectra and earthquake analysis of linear systems are discussed. Structural dynamics of earthquake engineering: theory and application using Mathematica and Matlab provides civil and structural engineers and students with an understanding of the dynamic response of structures to earthquakes and the common analysis techniques employed to evaluate these responses. Worked examples in Mathematica and Matlab are given. Explains the dynamic response of structures to earthquakes including periodic dynamic loadings and impulse loads Examines common analysis techniques such as natural mode superposition, the finite element method and numerical solutions Investigates this important topic in terms of both theory and practise with the inclusion of practical exercise and diagrams

Modern Earthquake Engineering

Modern Earthquake Engineering
  • Author : Junbo Jia
  • Publisher :Unknown
  • Release Date :2016-10-01
  • Total pages :848
  • ISBN : 9783642318542
GET BOOK HERE

Summary : This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.

Basic Earthquake Engineering

Basic Earthquake Engineering
  • Author : Halûk Sucuoğlu,Sinan Akkar
  • Publisher :Unknown
  • Release Date :2014-05-09
  • Total pages :288
  • ISBN : 9783319010267
GET BOOK HERE

Summary : This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.

Seismic Design of Buildings to Eurocode 8

Seismic Design of Buildings to Eurocode 8
  • Author : Ahmed Elghazouli
  • Publisher :Unknown
  • Release Date :2016-12-19
  • Total pages :368
  • ISBN : 9781498751605
GET BOOK HERE

Summary : This book focuses on the seismic design of building structures and their foundations to Eurocode 8. It covers the principles of seismic design in a clear but brief manner and then links these concepts to the provisions of Eurocode 8. It addresses the fundamental concepts related to seismic hazard, ground motion models, basic dynamics, seismic analysis, siting considerations, structural layout, and design philosophies, then leads to the specifics of Eurocode 8. Code procedures are applied with the aid of walk-through design examples which, where possible, deal with a common case study in most chapters. As well as an update throughout, this second edition incorporates three new and topical chapters dedicated to specific seismic design aspects of timber buildings and masonry structures, as well as base-isolation and supplemental damping. There is renewed interest in the use of sustainable timber buildings, and masonry structures still represent a popular choice in many areas. Moreover, seismic isolation and supplemental damping can offer low-damage solutions which are being increasingly considered in practice. The book stems primarily from practical short courses on seismic design which have been run over a number of years and through the development Eurocode 8. The contributors to this book are either specialist academics with significant consulting experience in seismic design, or leading practitioners who are actively engaged in large projects in seismic areas. This experience has provided significant insight into important areas in which guidance is required.

Structural Seismic Design Optimization and Earthquake Engineering

Structural Seismic Design Optimization and Earthquake Engineering
  • Author : Vagelis Plevris
  • Publisher :Unknown
  • Release Date :2012-01-01
  • Total pages :440
  • ISBN : 1466616423
GET BOOK HERE

Summary : "This book focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems, including simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design"--

Modern Earthquake Engineering

Modern Earthquake Engineering
  • Author : Junbo Jia
  • Publisher :Unknown
  • Release Date :2016-10-01
  • Total pages :848
  • ISBN : 9783642318542
GET BOOK HERE

Summary : This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.

Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson

Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson
  • Author : Rajesh Rupakhety,Símon Ólafsson
  • Publisher :Unknown
  • Release Date :2017-12-07
  • Total pages :403
  • ISBN : 9783319620992
GET BOOK HERE

Summary : This book presents methods and results that cover and extend beyond the state-of-the-art in structural dynamics and earthquake engineering. Most of the chapters are based on the keynote lectures at the International Conference in Earthquake Engineering and Structural Dynamics (ICESD), held in Reykjavik, Iceland, on June 12-14, 2017. The conference is being organised in memory of late Professor Ragnar Sigbjörnsson, who was an influential teacher and one of the leading researchers in the fields of structural mechanics, random fields, engineering seismology and earthquake engineering. Professor Sigbjörnsson had a close research collaboration with the Norwegian Institute of Science and Technology (NTNU), where his research was mainly focused in dynamics of marine and offshore structures. His research in Iceland was mainly focused on engineering seismology and earthquake engineering. The keynote-lecture based chapters are contributed by leading experts in these fields of research and showcase not only the historical perspective but also the most recent developments as well as a glimpse into the future. These chapters showcase a synergy of the fields of structural dynamics, engineering seismology, and earthquake engineering. In addition, some chapters in the book are based on works carried out under the leadership and initiative of Professor Sigbjörnsson and showcase his contribution to the understanding of seismic hazard and risk in Iceland. As such, the book is useful for both researchers and practicing engineers who are interested in recent research advances in structural dynamics and earthquake engineering, and in particular to those interested in seismic hazard and risk in Iceland.

Bridge Engineering

Bridge Engineering
  • Author : W.F. Chen,Lian Duan
  • Publisher :Unknown
  • Release Date :2003-02-27
  • Total pages :272
  • ISBN : 9781135500931
GET BOOK HERE

Summary : With chapters culled from the acclaimed Bridge Engineering Handbook, Bridge Engineering: Substructure Design focuses on the various components comprising and affecting bridge substructures. These include bearings, piers and columns, towers, abutments and retaining structures, footings and foundations, and bridge hydraulics. For each component, the

Seismic Design and Assessment of Bridges

Seismic Design and Assessment of Bridges
  • Author : Andreas J. Kappos,M. Saiid Saiidi,M. Nuray Aydınoğlu,Tatjana Isaković
  • Publisher :Unknown
  • Release Date :2012-04-18
  • Total pages :224
  • ISBN : 9789400739420
GET BOOK HERE

Summary : The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.

Recent Advances in Earthquake Engineering in Europe

Recent Advances in Earthquake Engineering in Europe
  • Author : Kyriazis Pitilakis
  • Publisher :Unknown
  • Release Date :2018-04-24
  • Total pages :691
  • ISBN : 9783319757414
GET BOOK HERE

Summary : This book is a collection of invited lectures including the 5th Nicholas Ambraseys distinguished lecture, four keynote lectures and twenty-two thematic lectures presented at the 16th European Conference on Earthquake Engineering, held in Thessaloniki, Greece, in June 2018. The lectures are put into chapters written by the most prominent internationally recognized academics, scientists, engineers and researchers in Europe. They address a comprehensive collection of state-of-the-art and cutting-edge topics in earthquake engineering, engineering seismology and seismic risk assessment and management. The book is of interest to civil engineers, engineering seismologists, seismic risk managers, policymakers and consulting companies covering a wide spectrum of fields from geotechnical and structural earthquake engineering, to engineering seismology and seismic risk assessment and management. Scientists, professional engineers, researchers, civil protection policymakers and students interested in the seismic design of civil engineering structures and infrastructures, hazard and risk assessment, seismic mitigation policies and strategies, will find in this book not only the most recent advances in the state-of-the-art, but also new ideas on future earthquake engineering and resilient design of structures. Chapter 1 of this book is available open access under a CC BY 4.0 license.

Design Optimization of Active and Passive Structural Control Systems

Design Optimization of Active and Passive Structural Control Systems
  • Author : Lagaros, Nikos D.
  • Publisher :Unknown
  • Release Date :2012-08-31
  • Total pages :414
  • ISBN : 9781466620308
GET BOOK HERE

Summary : A typical engineering task during the development of any system is, among others, to improve its performance in terms of cost and response. Improvements can be achieved either by simply using design rules based on the experience or in an automated way by using optimization methods that lead to optimum designs. Design Optimization of Active and Passive Structural Control Systems includes Earthquake Engineering and Tuned Mass Damper research topics into a volume taking advantage of the connecting link between them, which is optimization. This is a publication addressing the design optimization of active and passive control systems. This title is perfect for engineers, professionals, professors, and students alike, providing cutting edge research and applications.

Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications

Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications
  • Author : Plevris, Vagelis
  • Publisher :Unknown
  • Release Date :2012-05-31
  • Total pages :456
  • ISBN : 9781466616417
GET BOOK HERE

Summary : Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.

Proceedings, Fourth National Meeting of the Universities Council for Earthquake Engineering Research, June 28-29, 1976, the University of British Columbia

Proceedings, Fourth National Meeting of the Universities Council for Earthquake Engineering Research, June 28-29, 1976, the University of British Columbia
  • Author : Universities Council for Earthquake Engineering Research (U.S.)
  • Publisher :Unknown
  • Release Date :1976
  • Total pages :273
  • ISBN : UCSD:31822030792477
GET BOOK HERE

Summary :

Dynamic Structural Design

Dynamic Structural Design
  • Author : Izuru Takewaki
  • Publisher :Unknown
  • Release Date :2000
  • Total pages :259
  • ISBN : UOM:39015050116980
GET BOOK HERE

Summary : During the last two decades inverse problems in vibration have been studied extensively, and have formed a new research discipline in applied mechanics. These investigations have been accelerated through the rapid advancement of computer technology, while finite element and boundary element methods have stimulated the application of inverse problems in vibration. In the seismic-resistant design of building structures, the concept of 'performance-based design' has become very significant following such earthquakes as the Loma Prieta Earthquake (San Francisco, 1989), the Northridge Earthquake (Los Angeles, 1994) and the Hyogoken-Nanbu Earthquake (Kobe, 1995), and is now being incorporated into the design process of actual building structures. This book introduces a new dynamic structural design approach using inverse problem formulations to overcome several problems in the rationalization and systematization of structural design processes. A new direction for seismic-resistant design founded on the concept of performance based design is also proposed. Most of volume is based on the author's own work, and much of the contents has not been previously published. Simple models are includ

Performance Based Seismic Design for Tall Buildings

Performance Based Seismic Design for Tall Buildings
  • Author : Ramin Golesorkhi,Leonard Joseph,Ron Klemencic,David Shook,John Viise
  • Publisher :Unknown
  • Release Date :2017-10-30
  • Total pages :116
  • ISBN : 093949356X
GET BOOK HERE

Summary : Performance-Based Seismic Design (PBSD) is a structural design methodology that has become more common in urban centers around the world, particularly for the design of high-rise buildings. The primary benefit of PBSD is that it substantiates exceptions to prescribed code requirements, such as height limits applied to specific structural systems, and allows project teams to demonstrate higher performance levels for structures during a seismic event.However, the methodology also involves significantly more effort in the analysis and design stages, with verification of building performance required at multiple seismic demand levels using Nonlinear Response History Analysis (NRHA). The design process also requires substantial knowledge of overall building performance and analytical modeling, in order to proportion and detail structural systems to meet specific performance objectives.This CTBUH Technical Guide provides structural engineers, developers, and contractors with a general understanding of the PBSD process by presenting case studies that demonstrate the issues commonly encountered when using the methodology, along with their corresponding solutions. The guide also provides references to the latest industry guidelines, as applied in the western United States, with the goal of disseminating these methods to an international audience for the advancement and expansion of PBSD principles worldwide.

Seismic Design of Industrial Facilities

Seismic Design of Industrial Facilities
  • Author : Sven Klinkel,Christoph Butenweg,Gao Lin,Britta Holtschoppen
  • Publisher :Unknown
  • Release Date :2013-09-04
  • Total pages :642
  • ISBN : 9783658028107
GET BOOK HERE

Summary : Seismic Design of Industrial Facilities demands a deep knowledge on the seismic behaviour of the individual structural and non-structural components of the facility, possible interactions and last but not least the individual hazard potential of primary and secondary damages. From 26.-27. September 2013 the International Conference on Seismic Design of Industrial Facilities firstly addresses this broad field of work and research in one specialized conference. It brings together academics, researchers and professional engineers in order to discuss the challenges of seismic design for new and existing industrial facilities and to compile innovative current research. This volume contains 50 contributions to the SeDIF-Conference covering the following topics with respect to the specific conditions of plant design: · International building codes and guidelines on the seismic design of industrial facilities · Seismic design of non-structural components · Seismic design of silos and liquid-filled tanks - Soil-structure-interaction effects · Seismic safety evaluation, uncertainties and reliability analysis · Innovative seismic protection systems · Retrofitting The SeDIF-Conference is hosted by the Chair of Structural Statics and Dynamics of RWTH Aachen University, Germany, in cooperation with the Institute for Earthquake Engineering of the Dalian University of Technology, China.

Introduction to Dynamics of Structures and Earthquake Engineering

Introduction to Dynamics of Structures and Earthquake Engineering
  • Author : Gian Paolo Cimellaro,Sebastiano Marasco
  • Publisher :Unknown
  • Release Date :2018-03-26
  • Total pages :598
  • ISBN : 9783319725413
GET BOOK HERE

Summary : This work is an elementary but comprehensive textbook which provides the latest updates in the fields of Earthquake Engineering, Dynamics of Structures, Seismology and Seismic Design, introducing relevant new topics to the fields such as the Neodeterministic method. Its main purpose is to illustrate the application of energy methods and the analysis in the frequency domain with the corresponding visualization in the Gauss-Argant plan. However, emphasis is also given to the applications of numerical methods for the solution of the equation of motion and to the ground motion selection to be used in time history analysis of structures. As supplementary materials, this book provides “OPENSIGNAL", a rare and unique software for ground motion selection and processing that can be used by professionals to select the correct earthquake records that would run in the nonlinear analysis. The book contains clear illustrations and figures to describe the subject in an intuitive way. It uses simple language and terminology and the math is limited only to cases where it is essential to understand the physical meaning of the system. Therefore, it is suitable also for those readers who approach these subjects for the first time and who only have a basic understanding of mathematics (linear algebra) and static analysis of structures.

Tall Building Design

Tall Building Design
  • Author : Bungale S. Taranath
  • Publisher :Unknown
  • Release Date :2016-10-04
  • Total pages :838
  • ISBN : 9781315356860
GET BOOK HERE

Summary : Addresses the Question Frequently Proposed to the Designer by Architects: "Can We Do This? Offering guidance on how to use code-based procedures while at the same time providing an understanding of why provisions are necessary, Tall Building Design: Steel, Concrete, and Composite Systems methodically explores the structural behavior of steel, concrete, and composite members and systems. This text establishes the notion that design is a creative process, and not just an execution of framing proposals. It cultivates imaginative approaches by presenting examples specifically related to essential building codes and standards. Tying together precision and accuracy—it also bridges the gap between two design approaches—one based on initiative skill and the other based on computer skill. The book explains loads and load combinations typically used in building design, explores methods for determining design wind loads using the provisions of ASCE 7-10, and examines wind tunnel procedures. It defines conceptual seismic design, as the avoidance or minimization of problems created by the effects of seismic excitation. It introduces the concept of performance-based design (PBD). It also addresses serviceability considerations, prediction of tall building motions, damping devices, seismic isolation, blast-resistant design, and progressive collapse. The final chapters explain gravity and lateral systems for steel, concrete, and composite buildings. The Book Also Considers: Preliminary analysis and design techniques The structural rehabilitation of seismically vulnerable steel and concrete buildings Design differences between code-sponsored approaches The concept of ductility trade-off for strength Tall Building Design: Steel, Concrete, and Composite Systems is a structural design guide and reference for practicing engineers and educators, as well as recent graduates entering the structural engineering profession. This text examines all major concrete, steel, and composite building systems, and uses the most up-to-date building codes.

Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault or Long-Duration Ground Motions: Closed-Form Approach via Impulse Input

Critical Earthquake Response of Elastic-Plastic Structures Under Near-Fault or Long-Duration Ground Motions: Closed-Form Approach via Impulse Input
  • Author : Izuru Takewaki
  • Publisher :Unknown
  • Release Date :2015-12-22
  • Total pages :229
  • ISBN : 9782889197422
GET BOOK HERE

Summary : The specialty section Earthquake Engineering is one branch of Frontiers in Built Environment and welcomes critical and in-depth submissions on earthquake ground motions and their effects on buildings and infrastructures. Manuscripts should yield new insights and ultimately contribute to a safer and more reliable design of building structures and infrastructures. The scope includes the characterization of earthquake ground motions (e.g. near-fault, far-fault, short-period, long-period), their underlying properties, their intrinsic relationship with structural responses, and the true behaviors of building structures and infrastructures under risky and uncertain ground motions. More specific topics include recorded ground motions, generated ground motions, response spectra, stochastic modeling of ground motion, critical excitation, geotechnical aspects, soil mechanics, soil liquefaction, soil-structure interactions, pile foundations, earthquake input energy, structural control, passive control, active control, base-isolation, steel structures, reinforced concrete structures, wood structures, building retrofit, structural optimization, uncertainty analysis, robustness analysis, and redundancy analysis. This eBook includes four original research papers, in addition to the Specialty Grand Challenge article, on the critical earthquake response of elastic-plastic structures under near-fault or long-duration ground motions which were published in the specialty section Earthquake Engineering. In the early stage of dynamic nonlinear response analysis of structures around 1960s, a simple hysteretic structural model and a simple sinusoidal earthquake ground motion input were dealt with together with random inputs. The steady-state response was tackled by an equivalent linearization method developed by Caughey, Iwan and others. In fact, the resonance plays a key role in the earthquake-resistant design and it has a strong effect even in case of near-fault ground motions. In order to draw the steady-state response curve and investigate the resonant property, two kinds of repetition have to be introduced. One is a cycle, for one forced input frequency, of the initial guess of the steady-state response amplitude, the construction of the equivalent linear model, the analysis of the steady-state response amplitude using the equivalent linear model and the update of the equivalent linear model based on the computed steady-state response amplitude. The other is the sweeping over a range of forced input frequencies. This process is quite tedious. Four original research papers included in this eBook propose a new approach to overcome this difficulty. Kojima and Takewaki demonstrated that the elastic-plastic response as continuation of free-vibrations under impulse input can be derived in a closed form by a sophisticated energy approach without solving directly the equations of motion as differential equations. While, as pointed out above, the approach based on the equivalent linearization method requires the repetition of application of the linearized equations, the method by Kojima and Takewaki does not need any repetition. The double impulse, triple impulse and multiple impulses enable us to describe directly the critical timing of impulses (resonant frequency) which is not easy for the sinusoidal and other inputs without a repetitive procedure. It is important to note that, while most of the previous methods employ the equivalent linearization of the structural model with the input unchanged, the method treated in this eBook transforms the input into a series of impulses with the structural model unchanged. This characteristic guarantees high accuracy and reliability even in the large plastic deformation range. The approach presented in this eBook is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability of built environments in the elastic-plastic range