Download Data Mining Applications With R Book PDF

Download full Data Mining Applications With R books PDF, EPUB, Tuebl, Textbook, Mobi or read online Data Mining Applications With R anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Data Mining Applications with R

Data Mining Applications with R
  • Author : Yanchang Zhao,Yonghua Cen
  • Publisher :Unknown
  • Release Date :2013-11-26
  • Total pages :514
  • ISBN : 9780124115200
GET BOOK HERE

Summary : Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries Presents various case studies in real-world applications, which will help readers to apply the techniques in their work Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves

R and Data Mining

R and Data Mining
  • Author : Yanchang Zhao
  • Publisher :Unknown
  • Release Date :2012-12-31
  • Total pages :256
  • ISBN : 9780123972712
GET BOOK HERE

Summary : R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more. Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation. With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. Presents an introduction into using R for data mining applications, covering most popular data mining techniques Provides code examples and data so that readers can easily learn the techniques Features case studies in real-world applications to help readers apply the techniques in their work

Data Mining with R

Data Mining with R
  • Author : Luis Torgo
  • Publisher :Unknown
  • Release Date :2016-11-30
  • Total pages :426
  • ISBN : 9781315399096
GET BOOK HERE

Summary : Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications
  • Author : Robert Nisbet,Gary Miner,Ken Yale
  • Publisher :Unknown
  • Release Date :2017-11-09
  • Total pages :822
  • ISBN : 9780124166455
GET BOOK HERE

Summary : Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Data Mining Applications with R

Data Mining Applications with R
  • Author : Yanchang Zhao,Yonghua Cen
  • Publisher :Unknown
  • Release Date :2014
  • Total pages :470
  • ISBN : OCLC:1136565874
GET BOOK HERE

Summary :

Data Mining and Business Analytics with R

Data Mining and Business Analytics with R
  • Author : Johannes Ledolter
  • Publisher :Unknown
  • Release Date :2013-05-28
  • Total pages :368
  • ISBN : 9781118572153
GET BOOK HERE

Summary : Collecting, analyzing, and extracting valuable information froma large amount of data requires easily accessible, robust,computational and analytical tools. Data Mining and BusinessAnalytics with R utilizes the open source software R for theanalysis, exploration, and simplification of large high-dimensionaldata sets. As a result, readers are provided with the neededguidance to model and interpret complicated data and become adeptat building powerful models for prediction and classification. Highlighting both underlying concepts and practicalcomputational skills, Data Mining and Business Analytics withR begins with coverage of standard linear regression and theimportance of parsimony in statistical modeling. The book includesimportant topics such as penalty-based variable selection (LASSO);logistic regression; regression and classification trees;clustering; principal components and partial least squares; and theanalysis of text and network data. In addition, the bookpresents: • A thorough discussion and extensive demonstration of thetheory behind the most useful data mining tools • Illustrations of how to use the outlined concepts inreal-world situations • Readily available additional data sets and related Rcode allowing readers to apply their own analyses to the discussedmaterials • Numerous exercises to help readers with computing skillsand deepen their understanding of the material Data Mining and Business Analytics with R is an excellentgraduate-level textbook for courses on data mining and businessanalytics. The book is also a valuable reference for practitionerswho collect and analyze data in the fields of finance, operationsmanagement, marketing, and the information sciences.

Data Mining for Business Analytics

Data Mining for Business Analytics
  • Author : Galit Shmueli,Peter C. Bruce,Peter Gedeck,Nitin R. Patel
  • Publisher :Unknown
  • Release Date :2019-10-14
  • Total pages :608
  • ISBN : 9781119549857
GET BOOK HERE

Summary : Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Data Mining with Rattle and R

Data Mining with Rattle and R
  • Author : Graham Williams
  • Publisher :Unknown
  • Release Date :2011-08-04
  • Total pages :374
  • ISBN : 9781441998903
GET BOOK HERE

Summary : Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.

Classification, Clustering, and Data Mining Applications

Classification, Clustering, and Data Mining Applications
  • Author : David Banks,Leanna House,Frederick R. McMorris,Phipps Arabie,Wolfgang A. Gaul
  • Publisher :Unknown
  • Release Date :2011-01-07
  • Total pages :658
  • ISBN : 9783642171031
GET BOOK HERE

Summary : This volume describes new methods with special emphasis on classification and cluster analysis. These methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.

Data Analysis and Applications 1

Data Analysis and Applications 1
  • Author : Christos H. Skiadas,James R. Bozeman
  • Publisher :Unknown
  • Release Date :2019-03-04
  • Total pages :286
  • ISBN : 9781119597575
GET BOOK HERE

Summary : This series of books collects a diverse array of work that provides the reader with theoretical and applied information on data analysis methods, models, and techniques, along with appropriate applications. Volume 1 begins with an introductory chapter by Gilbert Saporta, a leading expert in the field, who summarizes the developments in data analysis over the last 50 years. The book is then divided into three parts: Part 1 presents clustering and regression cases; Part 2 examines grouping and decomposition, GARCH and threshold models, structural equations, and SME modeling; and Part 3 presents symbolic data analysis, time series and multiple choice models, modeling in demography, and data mining.

Data Mining for Business Analytics

Data Mining for Business Analytics
  • Author : Galit Shmueli,Peter C. Bruce,Peter Gedeck,Nitin R. Patel
  • Publisher :Unknown
  • Release Date :2019-11-05
  • Total pages :608
  • ISBN : 9781119549840
GET BOOK HERE

Summary : Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Data Mining Algorithms

Data Mining Algorithms
  • Author : Pawel Cichosz
  • Publisher :Unknown
  • Release Date :2015-01-27
  • Total pages :720
  • ISBN : 9781118332580
GET BOOK HERE

Summary : "This book narrows down the scope of data mining by adopting a heavily modeling-oriented perspective"--

Data Mining and Knowledge Discovery for Geoscientists

Data Mining and Knowledge Discovery for Geoscientists
  • Author : Guangren Shi
  • Publisher :Unknown
  • Release Date :2013-10-09
  • Total pages :376
  • ISBN : 9780124104754
GET BOOK HERE

Summary : Currently there are major challenges in data mining applications in the geosciences. This is due primarily to the fact that there is a wealth of available mining data amid an absence of the knowledge and expertise necessary to analyze and accurately interpret the same data. Most geoscientists have no practical knowledge or experience using data mining techniques. For the few that do, they typically lack expertise in using data mining software and in selecting the most appropriate algorithms for a given application. This leads to a paradoxical scenario of "rich data but poor knowledge". The true solution is to apply data mining techniques in geosciences databases and to modify these techniques for practical applications. Authored by a global thought leader in data mining, Data Mining and Knowledge Discovery for Geoscientists addresses these challenges by summarizing the latest developments in geosciences data mining and arming scientists with the ability to apply key concepts to effectively analyze and interpret vast amounts of critical information. Focuses on 22 of data mining’s most practical algorithms and popular application samples Features 36 case studies and end-of-chapter exercises unique to the geosciences to underscore key data mining applications Presents a practical and integrated system of data mining and knowledge discovery for geoscientists Rigorous yet broadly accessible to geoscientists, engineers, researchers and programmers in data mining Introduces widely used algorithms, their basic principles and conditions of applications, diverse case studies, and suggests algorithms that may be suitable for specific applications

Data Science Using Python and R

Data Science Using Python and R
  • Author : Chantal D. Larose,Daniel T. Larose
  • Publisher :Unknown
  • Release Date :2019-04-09
  • Total pages :240
  • ISBN : 9781119526810
GET BOOK HERE

Summary : Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naïve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.

R Data Mining

R Data Mining
  • Author : Andrea Cirillo
  • Publisher :Unknown
  • Release Date :2017-11-29
  • Total pages :442
  • ISBN : 9781787129238
GET BOOK HERE

Summary : Mine valuable insights from your data using popular tools and techniques in R About This Book Understand the basics of data mining and why R is a perfect tool for it. Manipulate your data using popular R packages such as ggplot2, dplyr, and so on to gather valuable business insights from it. Apply effective data mining models to perform regression and classification tasks. Who This Book Is For If you are a budding data scientist, or a data analyst with a basic knowledge of R, and want to get into the intricacies of data mining in a practical manner, this is the book for you. No previous experience of data mining is required. What You Will Learn Master relevant packages such as dplyr, ggplot2 and so on for data mining Learn how to effectively organize a data mining project through the CRISP-DM methodology Implement data cleaning and validation tasks to get your data ready for data mining activities Execute Exploratory Data Analysis both the numerical and the graphical way Develop simple and multiple regression models along with logistic regression Apply basic ensemble learning techniques to join together results from different data mining models Perform text mining analysis from unstructured pdf files and textual data Produce reports to effectively communicate objectives, methods, and insights of your analyses In Detail R is widely used to leverage data mining techniques across many different industries, including finance, medicine, scientific research, and more. This book will empower you to produce and present impressive analyses from data, by selecting and implementing the appropriate data mining techniques in R. It will let you gain these powerful skills while immersing in a one of a kind data mining crime case, where you will be requested to help resolving a real fraud case affecting a commercial company, by the mean of both basic and advanced data mining techniques. While moving along the plot of the story you will effectively learn and practice on real data the various R packages commonly employed for this kind of tasks. You will also get the chance of apply some of the most popular and effective data mining models and algos, from the basic multiple linear regression to the most advanced Support Vector Machines. Unlike other data mining learning instruments, this book will effectively expose you the theory behind these models, their relevant assumptions and when they can be applied to the data you are facing. By the end of the book you will hold a new and powerful toolbox of instruments, exactly knowing when and how to employ each of them to solve your data mining problems and get the most out of your data. Finally, to let you maximize the exposure to the concepts described and the learning process, the book comes packed with a reproducible bundle of commented R scripts and a practical set of data mining models cheat sheets. Style and approach This book takes a practical, step-by-step approach to explain the concepts of data mining. Practical use-cases involving real-world datasets are used throughout the book to clearly explain theoretical concepts.

RapidMiner

RapidMiner
  • Author : Markus Hofmann,Ralf Klinkenberg
  • Publisher :Unknown
  • Release Date :2016-04-19
  • Total pages :525
  • ISBN : 9781482205503
GET BOOK HERE

Summary : Powerful, Flexible Tools for a Data-Driven World As the data deluge continues in today’s world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of increasingly complex problems. Learn from the Creators of the RapidMiner Software Written by leaders in the data mining community, including the developers of the RapidMiner software, RapidMiner: Data Mining Use Cases and Business Analytics Applications provides an in-depth introduction to the application of data mining and business analytics techniques and tools in scientific research, medicine, industry, commerce, and diverse other sectors. It presents the most powerful and flexible open source software solutions: RapidMiner and RapidAnalytics. The software and their extensions can be freely downloaded at www.RapidMiner.com. Understand Each Stage of the Data Mining Process The book and software tools cover all relevant steps of the data mining process, from data loading, transformation, integration, aggregation, and visualization to automated feature selection, automated parameter and process optimization, and integration with other tools, such as R packages or your IT infrastructure via web services. The book and software also extensively discuss the analysis of unstructured data, including text and image mining. Easily Implement Analytics Approaches Using RapidMiner and RapidAnalytics Each chapter describes an application, how to approach it with data mining methods, and how to implement it with RapidMiner and RapidAnalytics. These application-oriented chapters give you not only the necessary analytics to solve problems and tasks, but also reproducible, step-by-step descriptions of using RapidMiner and RapidAnalytics. The case studies serve as blueprints for your own data mining applications, enabling you to effectively solve similar problems.

Text Mining with R

Text Mining with R
  • Author : Julia Silge,David Robinson
  • Publisher :Unknown
  • Release Date :2017-06-12
  • Total pages :194
  • ISBN : 9781491981627
GET BOOK HERE

Summary : Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you’ll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You’ll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You’ll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media. Learn how to apply the tidy text format to NLP Use sentiment analysis to mine the emotional content of text Identify a document’s most important terms with frequency measurements Explore relationships and connections between words with the ggraph and widyr packages Convert back and forth between R’s tidy and non-tidy text formats Use topic modeling to classify document collections into natural groups Examine case studies that compare Twitter archives, dig into NASA metadata, and analyze thousands of Usenet messages

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications
  • Author : Robert Nisbet,Gary Miner,Ken Yale
  • Publisher :Unknown
  • Release Date :2017-11-23
  • Total pages :822
  • ISBN : 0124166326
GET BOOK HERE

Summary : Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas-from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Cognitive Social Mining Applications in Data Analytics and Forensics

Cognitive Social Mining Applications in Data Analytics and Forensics
  • Author : Haldorai, Anandakumar,Ramu, Arulmurugan
  • Publisher :Unknown
  • Release Date :2018-12-14
  • Total pages :326
  • ISBN : 9781522575238
GET BOOK HERE

Summary : Recently, there has been a rapid increase in interest regarding social network analysis in the data mining community. Cognitive radios are expected to play a major role in meeting this exploding traffic demand on social networks due to their ability to sense the environment, analyze outdoor parameters, and then make decisions for dynamic time, frequency, space, resource allocation, and management to improve the utilization of mining the social data. Cognitive Social Mining Applications in Data Analytics and Forensics is an essential reference source that reviews cognitive radio concepts and examines their applications to social mining using a machine learning approach so that an adaptive and intelligent mining is achieved. Featuring research on topics such as data mining, real-time ubiquitous social mining services, and cognitive computing, this book is ideally designed for social network analysts, researchers, academicians, and industry professionals.

Advanced Data Mining and Applications

Advanced Data Mining and Applications
  • Author : Reda Alhajj,Hong Gao,Xue Li,Jianzhong Li,Osmar R. Zaiane
  • Publisher :Unknown
  • Release Date :2007-07-17
  • Total pages :636
  • ISBN : 9783540738701
GET BOOK HERE

Summary : This book constitutes the refereed proceedings of the Third International Conference on Advanced Data Mining and Applications, ADMA 2007, held in Harbin, China in August 2007. The papers focus on advancements in data mining and peculiarities and challenges of real world applications using data mining.

Database Support for Data Mining Applications

Database Support for Data Mining Applications
  • Author : Rosa Meo,Pier L. Lanzi
  • Publisher :Unknown
  • Release Date :2004-07-28
  • Total pages :323
  • ISBN : 3540224793
GET BOOK HERE

Summary : Data mining from traditional relational databases as well as from non-traditional ones such as semi-structured data, Web data, and scientific databases housing biological, linguistic, and sensor data has recently become a popular way of discovering hidden knowledge. This book on database support for data mining is developed to approaches exploiting the available database technology, declarative data mining, intelligent querying, and associated issues, such as optimization, indexing, query processing, languages, and constraints. Attention is also paid to the solution of data preprocessing problems, such as data cleaning, discretization, and sampling. The 16 reviewed full papers presented were carefully selected from various workshops and conferences to provide complete and competent coverage of the core issues. Some papers were developed within an EC funded project on discovering knowledge with inductive queries.