Download Direct Methane To Methanol Book PDF

Download full Direct Methane To Methanol books PDF, EPUB, Tuebl, Textbook, Mobi or read online Direct Methane To Methanol anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Direct Methane to Methanol

Direct Methane to Methanol
  • Author : Vladimir Arutyunov
  • Publisher :Unknown
  • Release Date :2014-01-30
  • Total pages :320
  • ISBN : 9780444632517
GET BOOK HERE

Summary : Direct Methane to Methanol: Foundations and Prospects of the Process offers a state-of-the-art account of one of the most interesting and potentially commercial technologies for direct conversion of natural gas into valuable chemicals. The book thoroughly explains the complex and unusual chemistry of the process, as well as possible applications for direct methane to methanol (DMTM). It covers topics involving thermokinetics, pressure, direct oxidation of heavier alkanes, and more, and provides detailed appendices with experimental data and product yields. This book provides all those who work in the field of gas processing and gas chemistry with the theory and experimental data to develop and apply new processes based on direct oxidation of natural gas. All those who deal with oil and natural gas production and processing will learn about this promising technology for the conversion of gas into more valuable chemicals. Reviews more than 350 publications on high-pressure, low-temperature oxidation of methane and other gas phase hydrocarbons Contains rare material available for the first time in English Explains the reasons of previous failure and outlines the way forward for commercial development of the conversion technology Presents a deep theoretical knowledge of this complex conversion process

Direct Methane to Methanol

Direct Methane to Methanol
  • Author : Meenakshi Awasthi
  • Publisher :Unknown
  • Release Date :2015-03-01
  • Total pages :280
  • ISBN : 1681173530
GET BOOK HERE

Summary : The oxidative coupling of methane (OCM) is a type of chemical reaction discovered in the 1980s for the direct conversion of natural gas, primarily consisting of methane, into value-added chemicals. Direct conversion of methane into other useful products is one of the most challenging subjects to be studied in heterogeneous catalysis. [1] Methane activation is difficult because of its thermodynamic stability with a noble gas-like electronic configuration. The tetrahedral arrangement of strong C-H bonds. (435 kj/mol) offer no functional group, magnetic moments or polar distributions to undergo chemical attack. This makes methane less reactive than nearly all of its conversion products, limiting efficient utilisation of natural gas, the world's most abundant petrochemical resource.

Methane Conversion

Methane Conversion
  • Author : D.M. Bibby,C.D. Chang,S. Yurchak,R.F. Howe
  • Publisher :Unknown
  • Release Date :1988-03-01
  • Total pages :737
  • ISBN : 0080960707
GET BOOK HERE

Summary : This proceedings volume comprises the invited plenary lectures, contributed and poster papers presented at a symposium organised to mark the successful inauguration of the world's first commercial plant for production of gasoline from natural gas, based on the Mobil methanol-to-gasoline process. The objectives of the Symposium were to present both fundamental research and engineering aspects of the development and commercialization of gas-to-gasoline processes. These include steam reforming, methanol synthesis and methanol-to-gasoline. Possible alternative processes e.g. MOGD, Fischer-Tropsch synthesis of hydrocarbons, and the direct conversion of methane to higher hydrocarbons were also considered. The papers in this volume provide a valuable and extremely wide-ranging overview of current research into the various options for natural gas conversion, giving a detailed description of the gas-to-gasoline process and plant. Together, they represent a unique combination of fundamental surface chemistry catalyst characterization, reaction chemistry and engineering scale-up and commercialization.

Catalysis and the Mechanism of Methane Conversion to Chemicals

Catalysis and the Mechanism of Methane Conversion to Chemicals
  • Author : Toshihide Baba,Akimitsu Miyaji
  • Publisher :Unknown
  • Release Date :2020-04-18
  • Total pages :220
  • ISBN : 9789811541322
GET BOOK HERE

Summary : This book introduces various types of reactions to produce chemicals by the direct conversion of methane from the point of view of mechanistic and functional aspects. The chemicals produced from methane are aliphatic and aromatic hydrocarbons such as propylene and benzene, and methanol. These chemicals are created by using homogeneous catalysts, heterogeneous catalysts such as zeolites, and biocatalysts such as enzymes. Various examples of methane conversion reactions that are discussed have been chosen to illustrate how heterogeneous and homogenous catalysts and biocatalysts and/or their reaction environments control the formation of highly energetic species from methane contributing to C-C and C-O bond formation.

Carbon Dioxide Chemistry, Capture and Oil Recovery

Carbon Dioxide Chemistry, Capture and Oil Recovery
  • Author : Iyad Karamé,Janah Shaya,Hassan Srour
  • Publisher :Unknown
  • Release Date :2018-08-16
  • Total pages :266
  • ISBN : 9781789235746
GET BOOK HERE

Summary : Fossil fuels still need to meet the growing demand of global economic development, yet they are often considered as one of the main sources of the CO2 release in the atmosphere. CO2, which is the primary greenhouse gas (GHG), is periodically exchanged among the land surface, ocean, and atmosphere where various creatures absorb and produce it daily. However, the balanced processes of producing and consuming the CO2 by nature are unfortunately faced by the anthropogenic release of CO2. Decreasing the emissions of these greenhouse gases is becoming more urgent. Therefore, carbon sequestration and storage (CSS) of CO2, its utilization in oil recovery, as well as its conversion into fuels and chemicals emerge as active options and potential strategies to mitigate CO2 emissions and climate change, energy crises, and challenges in the storage of energy.

Beyond Oil and Gas

Beyond Oil and Gas
  • Author : George A. Olah,Alain Goeppert,G. K. Surya Prakash
  • Publisher :Unknown
  • Release Date :2011-08-24
  • Total pages :350
  • ISBN : 9783527644636
GET BOOK HERE

Summary : The world is currently consuming about 85 million barrels of oil a day, and about two-thirds as much natural gas equivalent, both derived from non-renewable natural sources. In the foreseeable future, our energy needs will come from any available alternate source. Methanol is one such viable alternative, and also offers a convenient solution for efficient energy storage on a large scale. In this updated and enlarged edition, renowned chemists discuss in a clear and readily accessible manner the pros and cons of humankind's current main energy sources, while providing new ways to overcome obstacles. Following an introduction, the authors look at the interrelationship of fuels and energy, and at the extent of our non-renewable fossil fuels. They also discuss the hydrogen economy and its significant shortcomings. The main focus is on the conversion of CO2 from industrial as well as natural sources into liquid methanol and related DME, a diesel fuel substitute that can replace LNG and LPG. The book is rounded off with an optimistic look at future possibilities. A forward-looking and inspiring work that vividly illustrates potential solutions to our energy and environmental problems.

Methane Conversion by Oxidative Processes

Methane Conversion by Oxidative Processes
  • Author : Wolf
  • Publisher :Unknown
  • Release Date :2013-11-11
  • Total pages :548
  • ISBN : 9789401574495
GET BOOK HERE

Summary : A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.

Methane and Alkane Conversion Chemistry

Methane and Alkane Conversion Chemistry
  • Author : M.M. Bhasin,D.W. Slocum
  • Publisher :Unknown
  • Release Date :2012-12-06
  • Total pages :349
  • ISBN : 9781461518075
GET BOOK HERE

Summary : Natural gas, an abundant natural energy and chemical resource, is underutilized. Its inherent high energy content is compromised by its volatility. Storage and transportation problems abound for liquified natural gas. Several of the drawbacks of the utilization of natural gas, particularly its high volatility, could be offset by development of an economical and efficient process for coupling and/or further homologation of its principal component, methane. Alternatively, other conversion strategies such as partial oxidation to methanol and syngas, to oxygenates or conversion to such products via the intermediacy of chlorides should also be considered. Given the energy-intensive regimes necessary for the likely activation of methane, it was inevitable that researchers would tum to the use of heterogeneous catalysts. Heterogeneous catalysis is now a relatively mature discipline with numerous and diverse reactions being explored alongside informative studies on surface characterization, mechanism, and theory. Relationships to important related areas such as homogeneous catalysis, organometallic chemistry, and inorganic chemistry have become firmly established within this discipline. The field of methane and alkane activation is now over ten years old. The first decade of investigation produced results plagued by low yields and low-moderate conversions with well-articulated mechanistic limitations. As we begin the second decade of inquiry, novel strategies have brought increasing yields and conversions to such products as ethane, ethylene, methanol, and formaldehyde. These new approaches utilize separation of products via membranes or adsorbents. Moreover, additional mechanistic insight has been forthcoming from theoretical and computational examination as well as experimental investigation.

Modern Heterogeneous Oxidation Catalysis

Modern Heterogeneous Oxidation Catalysis
  • Author : Noritaka Mizuno
  • Publisher :Unknown
  • Release Date :2009-11-18
  • Total pages :356
  • ISBN : 9783527627554
GET BOOK HERE

Summary : Filling a gap in the current literature, this comprehensive reference presents all important catalyst classes, including metal oxides, polyoxometalates, and zeolites. Readers will find here everything they need to know -- from structure design to characterization, and from immobilization to industrial processes. A true must-have for anyone working in this key technology.

Zeolite Chemistry and Applications

Zeolite Chemistry and Applications
  • Author : Benoit Louis,Marcelo Maciel Pereira,Qiang Wang
  • Publisher :Unknown
  • Release Date :2020-04-20
  • Total pages :229
  • ISBN : 9782889636563
GET BOOK HERE

Summary :

The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production

The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production
  • Author : National Academies of Sciences, Engineering, and Medicine,Division on Earth and Life Studies,Board on Chemical Sciences and Technology
  • Publisher :Unknown
  • Release Date :2016-12-10
  • Total pages :136
  • ISBN : 9780309444798
GET BOOK HERE

Summary : A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world's highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity to discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.

Gaseous Carbon Waste Streams Utilization

Gaseous Carbon Waste Streams Utilization
  • Author : National Academies of Sciences, Engineering, and Medicine,Division on Earth and Life Studies,Board on Chemical Sciences and Technology,Committee on Developing a Research Agenda for Utilization of Gaseous Carbon Waste Streams
  • Publisher :Unknown
  • Release Date :2019-02-22
  • Total pages :256
  • ISBN : 9780309483360
GET BOOK HERE

Summary : In the quest to mitigate the buildup of greenhouse gases in Earth's atmosphere, researchers and policymakers have increasingly turned their attention to techniques for capturing greenhouse gases such as carbon dioxide and methane, either from the locations where they are emitted or directly from the atmosphere. Once captured, these gases can be stored or put to use. While both carbon storage and carbon utilization have costs, utilization offers the opportunity to recover some of the cost and even generate economic value. While current carbon utilization projects operate at a relatively small scale, some estimates suggest the market for waste carbon-derived products could grow to hundreds of billions of dollars within a few decades, utilizing several thousand teragrams of waste carbon gases per year. Gaseous Carbon Waste Streams Utilization: Status and Research Needs assesses research and development needs relevant to understanding and improving the commercial viability of waste carbon utilization technologies and defines a research agenda to address key challenges. The report is intended to help inform decision making surrounding the development and deployment of waste carbon utilization technologies under a variety of circumstances, whether motivated by a goal to improve processes for making carbon-based products, to generate revenue, or to achieve environmental goals.

Ethanol

Ethanol
  • Author : Angelo Basile,T. Nejat Veziroglu,Adolfo Iulianelli,Francesco Dalena
  • Publisher :Unknown
  • Release Date :2018-09
  • Total pages :612
  • ISBN : 0128114584
GET BOOK HERE

Summary : Ethanol: Science and Engineering reviews the most significant research findings in both ethanol production and utilization. The book's contents are divided into four parts, beginning with an explanation of the chemical reactions involved during the conversion of ethanol to more complex molecules. Other sections focus on various processes and their potential use, the modelling of various chemical processes, and finally, their economic and environmental impact. The book includes the most advanced production processes, new technologies, applications, and the economic role ethanol plays today. The book will be great for researchers and engineers in both academic and industry. The idea of using ethanol as a fuel is one of the most promising options in the arena of alternative fuels because of it versatile use as an intermediate for producing hydrogen via reforming reactions, direct fuel cells feed and/or its production from biomass, which is also considered a sustainable feedstock. Reviews ethanol production methods from biomass Discusses the potential of ethanol as a viable future fuel Includes hydrogen production methods using ethanol in catalytic reforming processes Outlines the various technologies based on ethanol Includes ethanol powered fuel cells

Frontiers of Green Catalytic Selective Oxidations

Frontiers of Green Catalytic Selective Oxidations
  • Author : Konstantin P. Bryliakov
  • Publisher :Unknown
  • Release Date :2019-10-02
  • Total pages :295
  • ISBN : 9789813297517
GET BOOK HERE

Summary : The demand for novel efficient and environmentally sustainable chemo, regio- and stereoselective catalyst systems for the oxidation of organic substrates is continuously growing in line with toughening economic and environmental constraints. This book addresses these issues; it consists of eleven chapters written by world-recognized experts in green and sustainable oxidation catalysis. The most urgent and challenging topics, in the judgment of the editor, such as green asymmetric epoxidations, sulfoxidatiuons, C–H oxidations; oxidation catalysis by polyoxometalates and oxidations in non-conventional solvents, etc. have been critically reviewed in this book. Both fundamental aspects, such as catalysts design, catalytic properties, nature of catalytically active sites and reaction mechanisms, and practical outlook of the oxidations have been addressed by the authors. The book appeals to a broad readership, particularly graduate students, employees of universities and research organizations, and industrial researchers, particularly those working in the areas of homogeneous oxidation catalysis, asymmetric synthesis, organocatalysis, sustainable catalytic processes and green chemistry, mechanisms of catalytic reactions, synthesis of bioactive compounds, biomimetic chemistry, etc. Konstantin Bryliakov is Leading Researcher at the Boreskov Institute of Catalysis. In 2016, he was elected Honorary Professor of the Russian Academy of Sciences.

Natural Gas Conversion VI

Natural Gas Conversion VI
  • Author : T.H. Fleisch,Enrique Iglesia,J.J. Spivey
  • Publisher :Unknown
  • Release Date :2001-06-01
  • Total pages :576
  • ISBN : 0080537316
GET BOOK HERE

Summary : This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Sumposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volum. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings.

New Advances in Hydrogenation Processes

New Advances in Hydrogenation Processes
  • Author : Maryam Takht Ravanchi
  • Publisher :Unknown
  • Release Date :2017-01-25
  • Total pages :362
  • ISBN : 9789535128694
GET BOOK HERE

Summary : Hydrogen is one of the abundant elements on earth majorly in the form of water (H2O) and mainly as hydrogen gas (H2). Catalytic hydrogenation is a key reaction that has versatile applications in different industries. The main objective of this book is to bring together various applications of hydrogenation through the perspective of leading researchers in the field. This book is intended to be used as a graduate-level text book or as a practical guide for industrial engineers.

Biofuels

Biofuels
  • Author : Krzysztof Biernat
  • Publisher :Unknown
  • Release Date :2018-07-11
  • Total pages :300
  • ISBN : 9781789233469
GET BOOK HERE

Summary : This book offers the current state of knowledge in the field of biofuels, presented by selected research centers from around the world. Biogas from waste production process and areas of application of biomethane were characterized. Also, possibilities of applications of wastes from fruit bunch of oil palm tree and high biomass/bagasse from sorghum and Bermuda grass for second-generation bioethanol were presented. Processes and mechanisms of biodiesel production, including the review of catalytic transesterification process, and careful analysis of kinetics, including bioreactor system for algae breeding, were widely analyzed. Problem of emissivity of NOx from engines fueled by B20 fuel was characterized. The closing chapters deal with the assessment of the potential of biofuels in Turkey, the components of refinery systems for production of biodegradable plastics from biomass. Also, a chapter concerning the environmental conditions of synthesis gas production as a universal raw material for the production of alternative fuels was also added.

Biomass Volume Estimation and Valorization for Energy

Biomass Volume Estimation and Valorization for Energy
  • Author : Jaya Shankar Tumuluru
  • Publisher :Unknown
  • Release Date :2017-02-22
  • Total pages :516
  • ISBN : 9789535129370
GET BOOK HERE

Summary : This book is the outcome of contributions by many experts in the field from different disciplines, various backgrounds, and diverse expertise. This book provides information on biomass volume calculation methods and biomass valorization for energy production. The chapters presented in this book include original research and review articles. I hope the research presented in this book will help to advance the use of biomass for bioenergy production and valorization. The key features of the book are: Providing information on biomass volume estimation using direct, nondestructive and remote sensing methods Biomass valorization for energy using thermochemical (gasification and pyrolysis) and biochemical (fermentation) conversion processes.

Methane Biocatalysis: Paving the Way to Sustainability

Methane Biocatalysis: Paving the Way to Sustainability
  • Author : Marina G. Kalyuzhnaya,Xin-Hui Xing
  • Publisher :Unknown
  • Release Date :2018-06-20
  • Total pages :312
  • ISBN : 9783319748665
GET BOOK HERE

Summary : This book provides in-depth insights into the most recent developments in different areas of microbial methane and methanol utilization, including novel fundamental discoveries in genomics and physiology, innovative strategies for metabolic engineering and new synthetic approaches for generation of feedstocks, chemicals and fuels from methane, and finally economics and the implementation of industrial biocatalysis using methane consuming bacteria. Methane, as natural gas or biogas, penetrates every area of human activity, from households to large industries and is often promoted as the cleanest fuel. However, one should not forget that this bundle of energy, carbon, and hydrogen comes with an exceptionally large environmental footprint. To meet goals of long-term sustainability and human well-being, all areas of energy, chemicals, agriculture, waste-management industries must go beyond short-term economic considerations and target both large and small methane emissions. The search for new environment-friendly approaches for methane capture and valorization is an ongoing journey. While it is not yet apparent which innovation might represent the best solution, it is evident that methane biocatalysis is one of the most promising paths. Microbes are gatekeepers of fugitive methane in Nature. Methane-consuming microbes are typically small in number but exceptionally big in their impact on the natural carbon cycle. They control and often completely eliminate methane emission from a variety of biological and geothermal sources. The tremendous potential of these microbial systems, is only now being implemented in human-made systems. The book addresses professors, researchers and graduate students from both academia and industry working in microbial biotechnology, molecular biology and chemical engineering.

The Direct Oxidation of Methane to Methanol by Nitrous Oxide Over Fe-ZSM-5

The Direct Oxidation of Methane to Methanol by Nitrous Oxide Over Fe-ZSM-5
  • Author : Benjamin Rue Wood
  • Publisher :Unknown
  • Release Date :2003
  • Total pages :258
  • ISBN : UCAL:C3487790
GET BOOK HERE

Summary :

Recent Advances in Carbon Capture and Storage

Recent Advances in Carbon Capture and Storage
  • Author : Yongseung Yun
  • Publisher :Unknown
  • Release Date :2017-03-08
  • Total pages :266
  • ISBN : 9789535130055
GET BOOK HERE

Summary : Carbon capture and storage (CCS) has been considered as a practical way in sequestering the huge anthropogenic CO2 amount with a reasonable cost until a more pragmatic solution appears. The CCS can work as a bridge before fulfilling the no-CO2 era of the future by applying to large-scale CO2 emitting facilities. But CCS appears to lose some passion by the lack of progress in technical developments and in commercial success stories other than EOR. This is the time to go back to basics, starting from finding a solution in small steps. The CCS technology desperately needs far newer ideas and breakthroughs that can overcome earlier attempts through improving, modifying, and switching the known principles. This book tries to give some insight into developing an urgently needed technical breakthrough through the recent advances in CCS research, in addition to the available small steps like soil carbon sequestration. This book provides the fundamental and practical information for researchers and graduate students who want to review the current technical status and to bring in new ideas to the conventional CCS technologies.