Download Electric Drives And Electromechanical Systems Book PDF

Download full Electric Drives And Electromechanical Systems books PDF, EPUB, Tuebl, Textbook, Mobi or read online Electric Drives And Electromechanical Systems anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Electric Drives and Electromechanical Systems

Electric Drives and Electromechanical Systems
  • Author : Richard Crowder
  • Publisher :Unknown
  • Release Date :2006-02-02
  • Total pages :312
  • ISBN : 0080492649
GET BOOK HERE

Summary : The focus of this book on the selection and application of electrical drives and control systems for electromechanical and mechatronics applications makes it uniquely useful for engineers in industry working with machines and drives. It also serves as a student text for courses on motors and drives, and engineering design courses, especially within mechanical engineering and mechatronics degree programs. The criteria for motor-drive selection are explained, and the main types of drives available to drive machine tools and robots introduced. The author also provides a review of control systems and their application, including PLCs and network technologies. The coverage of machine tools and high-performance drives in smaller applications makes this a highly practical book focused on the needs of students and engineers working with electromechanical systems. * An invaluable survey of electric drives and control systems for electromechanical and mechatronics applications * Essential reading for electrical and mechanical engineers using motors and drives * An ideal electric motors and drives text for university courses including mechatronics

Electric Drives and Electromechanical Systems

Electric Drives and Electromechanical Systems
  • Author : Richard Crowder
  • Publisher :Unknown
  • Release Date :2019-10-19
  • Total pages :322
  • ISBN : 9780081028858
GET BOOK HERE

Summary : Electric Drives and Electromechanical Devices: Applications and Control, Second Edition, presents a unified approach to the design and application of modern drive system. It explores problems involved in assembling complete, modern electric drive systems involving mechanical, electrical, and electronic elements. This book provides a global overview of design, specification applications, important design information, and methodologies. This new edition has been restructured to present a seamless, logical discussion on a wide range of topical problems relating to the design and specification of the complete motor-drive system. It is organised to establish immediate solutions to specific application problem. Subsidiary issues that have a considerable impact on the overall performance and reliability, including environmental protection and costs, energy efficiency, and cyber security, are also considered. Presents a comprehensive consideration of electromechanical systems with insights into the complete drive system, including required sensors and mechanical components Features in-depth discussion of control schemes, particularly focusing on practical operation Includes extensive references to modern application domains and real-world case studies, such as electric vehicles Considers the cyber aspects of drives, including networking and security

Advanced Control of Electrical Drives and Power Electronic Converters

Advanced Control of Electrical Drives and Power Electronic Converters
  • Author : Jacek Kabziński
  • Publisher :Unknown
  • Release Date :2016-09-30
  • Total pages :378
  • ISBN : 9783319457352
GET BOOK HERE

Summary : This contributed volume is written by key specialists working in multidisciplinary fields in electrical engineering, linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing. The authors of each chapter report the state of the art of the various topics addressed and present results of their own research, laboratory experiments and successful applications. The presented solutions concentrate on three main areas of interest: · motion control in complex electromechanical systems, including sensorless control; · fault diagnosis and fault tolerant control of electric drives; · new control algorithms for power electronics converters. The chapters and the complete book possess strong monograph attributes. Important practical and theoretical problems are deeply and accurately presented on the background of an exhaustive state-of the art review. Many results are completely new and were never published before. Well-known control methods like field oriented control (FOC) or direct torque control (DTC) are referred as a starting point for modifications or are used for comparison. Among numerous control theories used to solve particular problems are: nonlinear control, robust control, adaptive control, Lyapunov techniques, observer design, model predictive control, neural control, sliding mode control, signal filtration and processing, fault diagnosis, and fault tolerant control.

Sliding Mode Control in Electro-Mechanical Systems

Sliding Mode Control in Electro-Mechanical Systems
  • Author : Vadim Utkin,Juergen Guldner,Jingxin Shi
  • Publisher :Unknown
  • Release Date :2017-12-19
  • Total pages :503
  • ISBN : 9781420065619
GET BOOK HERE

Summary : Apply Sliding Mode Theory to Solve Control Problems Interest in SMC has grown rapidly since the first edition of this book was published. This second edition includes new results that have been achieved in SMC throughout the past decade relating to both control design methodology and applications. In that time, Sliding Mode Control (SMC) has continued to gain increasing importance as a universal design tool for the robust control of linear and nonlinear electro-mechanical systems. Its strengths result from its simple, flexible, and highly cost-effective approach to design and implementation. Most importantly, SMC promotes inherent order reduction and allows for the direct incorporation of robustness against system uncertainties and disturbances. These qualities lead to dramatic improvements in stability and help enable the design of high-performance control systems at low cost. Written by three of the most respected experts in the field, including one of its originators, this updated edition of Sliding Mode Control in Electro-Mechanical Systems reflects developments in the field over the past decade. It builds on the solid fundamentals presented in the first edition to promote a deeper understanding of the conventional SMC methodology, and it examines new design principles in order to broaden the application potential of SMC. SMC is particularly useful for the design of electromechanical systems because of its discontinuous structure. In fact, where the hardware of many electromechanical systems (such as electric motors) prescribes discontinuous inputs, SMC becomes the natural choice for direct implementation. This book provides a unique combination of theory, implementation issues, and examples of real-life applications reflective of the authors’ own industry-leading work in the development of robotics, automobiles, and other technological breakthroughs.

Advanced Electrical Drives

Advanced Electrical Drives
  • Author : Rik De Doncker,Duco W.J. Pulle,André Veltman
  • Publisher :Unknown
  • Release Date :2010-11-30
  • Total pages :462
  • ISBN : 9400701810
GET BOOK HERE

Summary : Electrical drives convert in a controlled manner, electrical energy into mechanical energy. Electrical drives comprise an electrical machine, i.e. an electro-mechanical energy converter, a power electronic converter, i.e. an electrical-to-electrical converter, and a controller/communication unit. Today, electrical drives are used as propulsion systems in high-speed trains, elevators, escalators, electric ships, electric forklift trucks and electric vehicles. Advanced control algorithms (mostly digitally implemented) allow torque control over a high-bandwidth. Hence, precise motion control can be achieved. Examples are drives in robots, pick-and-place machines, factory automation hardware, etc. Most drives can operate in motoring and generating mode. Wind turbines use electrical drives to convert wind energy into electrical energy. More and more, variable speed drives are used to save energy for example, in air-conditioning units, compressors, blowers, pumps and home appliances. Key to ensure stable operation of a drive in the aforementioned applications are torque control algorithms. In Advanced Electrical Drives, a unique approach is followed to derive model based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for this generalized modeling approach that ultimately leads to the development of universal field-oriented control algorithms. In case of switched reluctance machines, torque observers are proposed to implement direct torque algorithms. From a didactic viewpoint, tutorials are included at the end of each chapter. The reader is encouraged to execute these tutorials to familiarize him or herself with all aspects of drive technology. Hence, Advanced Electrical Drives encourages “learning by doing”. Furthermore, the experienced drive specialist may find the simulation tools useful to design high-performance controllers for all sorts of electrical drives.

Electromechanical Systems and Devices

Electromechanical Systems and Devices
  • Author : Sergey Edward Lyshevski
  • Publisher :Unknown
  • Release Date :2008-03-26
  • Total pages :584
  • ISBN : 9781420069754
GET BOOK HERE

Summary : Students entering today's engineering fields will find an increased emphasis on practical analysis, design, and control. They must be able to translate their advanced programming abilities and sound theoretical backgrounds into superior problem-solving skills. Electromechanical Systems and Devices facilitates the creation of critical problem-solvin

Dynamics and Control of Electrical Drives

Dynamics and Control of Electrical Drives
  • Author : Wach Piotr
  • Publisher :Unknown
  • Release Date :2011-04-28
  • Total pages :454
  • ISBN : 3642202225
GET BOOK HERE

Summary : Dynamics is a science concerned with movement and changes. In the most general approach it relates to life processes as well as behavior in nature in rest. It governs small particles, technical objects, conversion of matter and materials but also concerns people, groups of people in their individual and, in particular, social dimension. In dynamics we always have to do with causes or stimuli for motion, the rules of reaction or behavior and its result in the form of trajectory of changes. This book is devoted to dynamics of a wide class of specific but very important objects such as electromechanical systems. This is a very rigorous discipline and has a long tradition, as its theoretical bases were formulated in the first half of the XIX century by d’ Alembert, Lagrange, Hamilton, Maxwell and other prominent scientists, but their crucial results were based on previous pioneering research of others such as Copernicus, Galileo, Newton... This book in its theoretical foundations is based on the principle of least action which governs classical as well as relativistic mechanics and electromagnetism and leads to Lagrange’s equations which are applied in the book as universal method to construct equations of motion of electromechanical systems. It gives common and coherent grounds to formulate mathematical models for all lumped parameters’ electromechanical systems, which are vital in our contemporary industry and civilized everyday life. From these remarks it seems that the book is general and theoretical but in fact it is a very practical one concerning modern electrical drives in a broad sense, including electromechanical energy conversion, induction motor drives, brushless DC drives with a permanent magnet excitation and switched reluctance machines (SRM). And of course their control, which means shaping of their trajectories of motion using modern tools, their designed autonomy in keeping a track according to our programmed expectations. The problems presented in the book are widely illustrated by characteristics, trajectories, dynamic courses all computed by use of developed simulation models throughout the book. There are some classical subjects and the history of the discipline is discussed but finally all modern tools and means are presented and applied. More detailed descriptions follow in abstracts for the particular chapters. The author hopes kind readers will enjoy and profit from reading this book.

Control of Electrical Drives

Control of Electrical Drives
  • Author : Werner Leonhard
  • Publisher :Unknown
  • Release Date :2012-12-06
  • Total pages :420
  • ISBN : 9783642976469
GET BOOK HERE

Summary : Electrical drives play an important part as electromechanical energy converters in transportation, materials handling and most production processes. This book presents a unified treatment of complete electrical drive systems, including the mechanical parts, electrical machines, and power converters and control. Since it was first published in 1985 the book has found its way onto many desks in industry and universities all over the world. For the second edition the text has been thoroughly revised and updated, with the aim of offering the reader a general view of the field of controlled electrial drives, which are maintaining and extending their importance as the most flexible source of controlled mechanical energy.

Automotive Electricity

Automotive Electricity
  • Author : Joseph Beretta
  • Publisher :Unknown
  • Release Date :2013-03-04
  • Total pages :304
  • ISBN : 9781118617373
GET BOOK HERE

Summary : Since the beginning of the century, electrical goods have invaded our everyday lives. Now, electric power is coming to be seen as a solution to the pollution caused by cars. While this transition has remained very slow during the last ten years, it has been accelerating as the statutory constraints and needs of the market have changed. Even if the electric car itself fails to dominate the market, electric traction is taking an important place in our drive to move away from gas-powered vehicles. Another solution, hybrid vehicles, combine two sources of energy (electric and chemical), reducing the global consumption of fossil fuels. Fuel cell vehicles are also one of the most promising technologies for the future, with the capacity to use any fuel - hydrogen being the ideal fuel ecologically, but constrained by infrastructure and storage issues. This book explores all these different solutions for moving our vehicles from fossil fuel consumption to new, more environmentally-friendly power sources.

Electric Motors and Drives

Electric Motors and Drives
  • Author : Austin Hughes
  • Publisher :Unknown
  • Release Date :2013-10-22
  • Total pages :316
  • ISBN : 9781483105277
GET BOOK HERE

Summary : Electric Motors and Drives: Fundamentals, Types and Applications provides information regarding the inner workings of motor and drive system. The book is comprised of nine chapters that cover several aspects and types of motor and drive systems. Chapter 1 discusses electric motors, and Chapter 2 deals with power electronic converters for motor drives. Chapter 3 covers the conventional d.c. motors, while Chapter 4 tackles inductions motors – rotating field, slip, and torque. The book also talks about the operating characteristics of induction motors, and then deals with the inverter-fed induction motor drives. The stepping motor systems; the synchronous, switched reluctance, and brushless d.c. drives; and the motor/drive selection are also covered. The text will be of great use to individuals who wish to familiarize themselves with motor and drive systems.

Electric Machines and Drives

Electric Machines and Drives
  • Author : Shaahin Filizadeh
  • Publisher :Unknown
  • Release Date :2013-02-20
  • Total pages :237
  • ISBN : 9781466595989
GET BOOK HERE

Summary : Electric machines have a ubiquitous presence in our modern daily lives, from the generators that supply electricity to motors of all sizes that power countless applications. Providing a balanced treatment of the subject, Electric Machines and Drives: Principles, Control, Modeling, and Simulation takes a ground-up approach that emphasizes fundamental principles. The author carefully deploys physical insight, mathematical rigor, and computer simulation to clearly and effectively present electric machines and drive systems. Detailing the fundamental principles that govern electric machines and drives systems, this book: Describes the laws of induction and interaction and demonstrates their fundamental roles with numerous examples Explores dc machines and their principles of operation Discusses a simple dynamic model used to develop speed and torque control strategies Presents modeling, steady state based drives, and high-performance drives for induction machines, highlighting the underlying physics of the machine Includes coverage of modeling and high performance control of permanent magnet synchronous machines Highlights the elements of power electronics used in electric drive systems Examines simulation-based optimal design and numerical simulation of dynamical systems Suitable for a one semester class at the senior undergraduate or a graduate level, the text supplies simulation cases that can be used as a base and can be supplemented through simulation assignments and small projects. It includes end-of-chapter problems designed to pick up on the points presented in chapters and develop them further or introduce additional aspects. The book provides an understanding of the fundamental laws of physics upon which electric machines operate, allowing students to master the mathematical skills that their modeling and analysis requires.

Electric Powertrain

Electric Powertrain
  • Author : John G. Hayes,G. Abas Goodarzi
  • Publisher :Unknown
  • Release Date :2018-02-05
  • Total pages :560
  • ISBN : 9781119063643
GET BOOK HERE

Summary : The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes, direct to discuss course content or structure.

Electromechanical Energy Conversion

Electromechanical Energy Conversion
  • Author : Zeki Uğurata Kocabiyikoğlu
  • Publisher :Unknown
  • Release Date :2020-08-09
  • Total pages :278
  • ISBN : 9781000094848
GET BOOK HERE

Summary : This book is intended to be a textbook for undergraduate students studying electrical and electronic engineering in universities and colleges. Therefore, the level and amount of the knowledge to be transferred to the reader is kept to as much as what can be taught in one academic semester of a university or a college course. Although the subject is rather classical and somehow well established in some respects, it is vast and can be difficult to grasp if unnecessary details are not avoided. This book is aimed to give the reader just what is necessary - with plenty of short and easily understandable examples and drawings, figures, and tables. A course on electromechanical energy conversion is a necessity in all universities and colleges entitled to grant a license for electrical engineering. This book is aimed at meeting the requirements of this essential subject by providing necessary information to complete the course. A compact chapter is included with figures and tables on energy and the restraints on its production brought about by global climate change. A new approach has been tried for some of the classic subjects including magnetic circuits and electrical machines together with today’s much-used motors.

Electrical Drives And Control

Electrical Drives And Control
  • Author : U.A.Bakshi,M.V.Bakshi
  • Publisher :Unknown
  • Release Date :2009
  • Total pages :376
  • ISBN : 8184316437
GET BOOK HERE

Summary :

Digital Control of Electric Drives

Digital Control of Electric Drives
  • Author : R. Koziol,J. Sawicki,L. Szklarski
  • Publisher :Unknown
  • Release Date :2013-10-22
  • Total pages :215
  • ISBN : 9780080934624
GET BOOK HERE

Summary : The electromechanical systems employed in different branches of industry are utilized most often as drives of working machines which must be fed with electric energy in a continuous, periodic or even discrete way. Some of these machines operate at constant speed, others require wide and varying energy control. In many designs the synchronous cooperation of several electric drives is required in addition to the desired dynamic properties. For these reasons the control of the cooperation and dynamics of electromechanical systems requires the use of computers. This book adopts an unusual approach to the subject in that it treats the electric drive system on the one hand as an element of a control system and on the other as an element of a complex automatic system. These two trends in the development of the automatic control of electric drives have resulted in a volume that provides a thorough overview on the variety of different approaches to the design of control systems.

Introduction to Electric Power and Drive Systems

Introduction to Electric Power and Drive Systems
  • Author : Paul Krause,Oleg Wasynczuk,Timothy O'Connell,Maher Hasan
  • Publisher :Unknown
  • Release Date :2017-02-08
  • Total pages :256
  • ISBN : 9781119214274
GET BOOK HERE

Summary : An introduction to the analysis of electric machines, power electronic circuits, electric drive performance, and power systems This book provides students with the basic physical concepts and analysis tools needed for subsequent coursework in electric power and drive systems with a focus on Tesla’s rotating magnetic field. Organized in a flexible format, it allows instructors to select material as needed to fit their school’s power program. The first chapter covers the fundamental concepts and analytical methods that are common to power and electric drive systems. The subsequent chapters offer introductory analyses specific to electric machines, power electronic circuits, drive system performance and simulation, and power systems. In addition, this book: Provides students with an analytical base on which to build in advanced follow-on courses Examines fundamental power conversions (dc-dc, ac-dc and dc-ac), harmonics, and distortion Describes the dynamic computer simulation of a brushless dc drive to illustrate its performance with both a sinusoidal inverter voltage approximation and more realistic stator six-step drive applied voltages Includes in-chapter short problems, numerous worked examples, and end-of-chapter problems to help readers review and more fully understand each topic

Passivity-based Control of Euler-Lagrange Systems

Passivity-based Control of Euler-Lagrange Systems
  • Author : Romeo Ortega,Julio Antonio Loría Perez,Per Johan Nicklasson,Hebertt J. Sira-Ramirez
  • Publisher :Unknown
  • Release Date :2013-06-29
  • Total pages :543
  • ISBN : 9781447136033
GET BOOK HERE

Summary : The essence of this work is the control of electromechanical systems, such as manipulators, electric machines, and power converters. The common thread that links together the results presented here is the passivity property, which is at present in numerous electrical and mechanical systems, and which has great relevance in control engineering at this time. Amongst other topics, the authors cover: Euler-Lagrange Systems, Mechanical Systems, Generalised AC Motors, Induction Motor Control, Robots with AC Drives, and Perspectives and Open Problems. The authors have extensive experience of research and application in the field of control of electromechanical systems, which they have summarised here in this self-contained volume. While written in a strictly mathematical way, it is also elementary, and will be accessible to a wide-ranging audience, including graduate students as well as practitioners and researchers in this field.

Electric Motors and Control Systems

Electric Motors and Control Systems
  • Author : Frank Petruzella
  • Publisher :Unknown
  • Release Date :2015-02-09
  • Total pages :320
  • ISBN : 0073373818
GET BOOK HERE

Summary : This book has been written for a course of study that will introduce the reader to a broad range of motor types and control systems. It provides an overview of electric motor operation, selection, installation, control and maintenance. Every effort has been made in this second edition to present the most up-to-date information which reflects the current needs of the industry. The broad based approach taken makes this text viable for a variety of motors and control systems courses. Content is suitable for colleges, technical institutions, vocational/technical schools as well as apprenticeship and journeymen training. Electrical apprentices and journeymen will find this book to be invaluable due to Electrical Code references applicable to the installation of new control systems and motors, as well as information on maintenance and troubleshooting techniques. Personnel involved in the motor maintenance and repair will find this book to be a useful reference text. The text is comprehensive! It includes coverage of how motors operate in conjunction with their associated control circuitry. Both older and newer motor technologies are examined. Topics covered range from motor types and controls to installing and maintaining conventional controllers, electronic motor drives and programmable logic controllers. Also Available! Activities Manual for Electric Motors and Control Systems, as well as, McGraw-Hill Education's Connect! Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, and how they need it, so that your class time is more engaging and effective. SAVE WHEN YOU BUY A PACKAGE! Electric Motors & Control Systems 2/e Textbook + Activities Manual ISBN: 1259332837 WILL BE AVAILABLE FEBRUARY 2015

Advancements in Electric Machines

Advancements in Electric Machines
  • Author : J. F. Gieras
  • Publisher :Unknown
  • Release Date :2008-11-14
  • Total pages :278
  • ISBN : 9781402090073
GET BOOK HERE

Summary : Traditionally, electrical machines are classi?ed into d. c. commutator (brushed) machines, induction (asynchronous) machines and synchronous machines. These three types of electrical machines are still regarded in many academic curricula as fundamental types, despite that d. c. brushed machines (except small machines) have been gradually abandoned and PM brushless machines (PMBM) and switched reluctance machines (SRM) have been in mass p- duction and use for at least two decades. Recently, new topologies of high torque density motors, high speed motors, integrated motor drives and special motors have been developed. Progress in electric machines technology is stimulated by new materials, new areas of applications, impact of power electronics, need for energy saving and new technological challenges. The development of electric machines in the next few years will mostly be stimulated by computer hardware, residential and public applications and transportation systems (land, sea and air). At many Universities teaching and research strategy oriented towards el- trical machinery is not up to date and has not been changed in some co- tries almost since the end of the WWII. In spite of many excellent academic research achievements, the academia–industry collaboration and technology transfer are underestimated or, quite often, neglected. Underestimation of the role of industry, unfamiliarity with new trends and restraint from technology transfer results, with time, in lack of external ?nancial support and drastic - cline in the number of students interested in Power Electrical Engineering.

Electric Machines and Drives

Electric Machines and Drives
  • Author : Ned Mohan
  • Publisher :Unknown
  • Release Date :2011-12-13
  • Total pages :276
  • ISBN : 9781118214480
GET BOOK HERE

Summary : This book is part of a three-book series. Ned Mohan has been a leader in EES education and research for decades, as author of the best-selling text/reference Power Electronics. This book emphasizes applications of electric machines and drives that are essential for wind turbines and electric and hybrid-electric vehicles. The approach taken is unique in the following respects: A systems approach, where Electric Machines are covered in the context of the overall drives with applications that students can appreciate and get enthusiastic about; A fundamental and physics-based approach that not only teaches the analysis of electric machines and drives, but also prepares students for learning how to control them in a graduate level course; Use of the space-vector-theory that is made easy to understand. They are introduced in this book in such a way that students can appreciate their physical basis; A unique way to describe induction machines that clearly shows how they go from the motoring-mode to the generating-mode, for example in wind and electric vehicle applications, and how they ought to be controlled for the most efficient operation.

Power Electronics and Electric Drives for Traction Applications

Power Electronics and Electric Drives for Traction Applications
  • Author : Gonzalo Abad
  • Publisher :Unknown
  • Release Date :2016-11-14
  • Total pages :648
  • ISBN : 9781118954423
GET BOOK HERE

Summary : Power Electronics and Electric Drives for Traction Applications offers a practical approach to understanding power electronics applications in transportation systems ranging from railways to electric vehicles and ships. It is an application-oriented book for the design and development of traction systems accompanied by a description of the core technology. The first four introductory chapters describe the common knowledge and background required to understand the preceding chapters. After that, each application-specific chapter: highlights the significant manufacturers involved; provides a historical account of the technological evolution experienced; distinguishes the physics and mechanics; and where possible, analyses a real life example and provides the necessary models and simulation tools, block diagrams and simulation based validations. Key features: Surveys power electronics state-of-the-art in all aspects of traction applications. Presents vital design and development knowledge that is extremely important for the professional community in an original, simple, clear and complete manner. Offers design guidelines for power electronics traction systems in high-speed rail, ships, electric/hybrid vehicles, elevators and more applications. Application-specific chapters co-authored by traction industry expert. Learning supplemented by tutorial sections, case studies and MATLAB/Simulink-based simulations with data from practical systems. A valuable reference for application engineers in traction industry responsible for design and development of products as well as traction industry researchers, developers and graduate students on power electronics and motor drives needing a reference to the application examples.