Download Handbook Of Polymer Applications In Medicine And Medical Devices Book PDF

Download full Handbook Of Polymer Applications In Medicine And Medical Devices books PDF, EPUB, Tuebl, Textbook, Mobi or read online Handbook Of Polymer Applications In Medicine And Medical Devices anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices
  • Author : Kayvon Modjarrad,Sina Ebnesajjad
  • Publisher :Unknown
  • Release Date :2013-12-05
  • Total pages :368
  • ISBN : 9780323221696
GET BOOK HERE

Summary : While the prevalence of plastics and elastomers in medical devices is now quite well known, there is less information available covering the use of medical devices and the applications of polymers beyond medical devices, such as in hydrogels, biopolymers and silicones beyond enhancement applications, and few books in which these are combined into a single reference. This book is a comprehensive reference source, bringing together a number of key medical polymer topics in one place for a broad audience of engineers and scientists, especially those currently developing new medical devices or seeking more information about current and future applications. In addition to a broad range of applications, the book also covers clinical outcomes and complications arising from the use of the polymers in the body, giving engineers a vital insight into the real world implications of the devices they’re creating. Regulatory issues are also covered in detail. The book also presents the latest developments on the use of polymers in medicine and development of nano-scale devices. Gathers discussions of a large number of applications of polymers in medicine in one place Provides an insight into both the legal and clinical implications of device design Relevant to industry, academic and medical professionals Presents the latest developments in the field, including medical devices on a nano-scale

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices
  • Author : Kayvon Modjarrad
  • Publisher :Unknown
  • Release Date :2013-12-05
  • Total pages :368
  • ISBN : 9780128076637
GET BOOK HERE

Summary : The history of plastics and medical devices traces a complex course of slowly evolving ideas punctuated by moments of intellectual revolution. When viewed from the vantage of retrospect, it becomes apparent that milestones in the progress of biomaterial science represent culminations of gradual shifts in theory and iterative experimentation. This has been as true for methodological developments in polymer chemistry as it has for technological breakthroughs in medical equipment design. The two disciplines, though now inextricable from one another, initially advanced along largely separate and occasionally redundant paths. Until the latter decades of the twentieth century, physicians and surgeons modified existing materials to create and refine devices according to their clinical needs while chemists and engineers synthesized materials de novo without specific attention to their potential medical applications. In the modern era, however, the lines between the chemical and biological sciences have blurred, paving way for an interdisciplinary approach toward the design and application of medical plastics.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices
  • Author : André Colas,Jim Curtis
  • Publisher :Unknown
  • Release Date :2013-12-05
  • Total pages :368
  • ISBN : 9780128076699
GET BOOK HERE

Summary : Silicone materials have been widely used in medicine for over 60 years. Available in a variety of material types, they have unique chemical and physical properties that manifest in excellent biocompatibility and biodurability for many applications. Silicone elastomers have remarkably low glass-transition temperatures and maintain their flexibility over a wide temperature range, enabling them to withstand conditions from cold storage to steam autoclaving. They have high permeability to gases and many drugs, advantageous respectively in wound care or in transdermal drug delivery. They have low surface tension and remarkable chemical stability, enabling biocompatibility and biodurability in many long-term implant applications.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices
  • Author : Zheng Zhang,Ophir Ortiz,Ritu Goyal,Joachim Kohn
  • Publisher :Unknown
  • Release Date :2013-12-05
  • Total pages :368
  • ISBN : 9780128076750
GET BOOK HERE

Summary : The design and development of tissue-engineered products has benefited from many years of clinical utilization of a wide range of biodegradable polymers. Newly developed biodegradable polymers and modifications of previously developed biodegradable polymers have enhanced the tools available for creating clinically important tissue-engineering applications. Insights gained from studies of cell-matrix interactions, cell-cell signaling, and organization of cellular components, are placing increased demands on medical implants to interact with the patient’s tissue in a more biologically appropriate fashion. Whereas in the twentieth century biocompatibility was largely equated with eliciting no harmful response, the biomaterials of the twenty first century will have to elicit tissue responses that support healing or regeneration of the patient’s own tissue. This chapter surveys the universe of those biodegradable polymers that may be useful in the development of medical implants and tissue-engineered products. Here, we distinguish between biologically derived polymers and synthetic polymers. The materials are described in terms of their chemical composition, breakdown products, mechanism of breakdown, mechanical properties, and clinical limitations. Also discussed are product design considerations in processing of biomaterials into a final form (e.g., gel, membrane, matrix) that will effect the desired tissue response.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices
  • Author : Steven M. Kurtz
  • Publisher :Unknown
  • Release Date :2013-12-05
  • Total pages :368
  • ISBN : 9780128076729
GET BOOK HERE

Summary : The orthopedic and biomaterials literature of the 1990s reflects an early academic curiosity in implant applications of polyaryletherketone (PAEK) biomaterials [1,2]. However, widespread commercial applications for PAEK biomaterials in the human body were first realized with cage implants intended to promote intervertebral body (interbody) fusion of the lumbar spine. Success of PAEK with interbody implants would later inspire applications in a broad variety of spinal implant applications, including posterior fusion, dynamic stabilization, and disc arthroplasty.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices
  • Author : Wei He,Roberto Benson
  • Publisher :Unknown
  • Release Date :2013-12-05
  • Total pages :368
  • ISBN : 9780128076668
GET BOOK HERE

Summary : Biomaterials are an indispensable element in improving human health and quality of life. Applications of biomaterials include diagnostics (gene arrays and biosensors), medical supplies (blood bags and surgical tools), therapeutic treatments (medical implants and devices), and emerging regenerative medicine (tissue-engineered skin and cartilage). Polymers, being organic, offer a versatility that is unmatched by metals and ceramics. The wide spectrum of physical, mechanical, and chemical properties provided by polymers has fueled the extensive research, development, and applications of polymeric biomaterials. The significance of polymers as biomaterials is reflected in the market size of medical polymers, estimated to be approximately $1 billion. Many of these polymers were initially developed as plastics, elastomers, and fibers for nonmedical industrial applications, but were later developed as biomedical-specific materials. With rapid growth in modern biology and interdisciplinary collaborative efforts, polymeric biomaterials are being fashioned into bioactive and biomimetic materials, with excellent biocompatibility.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices
  • Author : Len Czuba
  • Publisher :Unknown
  • Release Date :2013-12-05
  • Total pages :368
  • ISBN : 9780128076644
GET BOOK HERE

Summary : This chapter will present a look at the medical device market with a particular focus on the materials of construction of devices and what we can expect in new products looking ahead. A deeper look at some other trends that have an effect on the direction of the medical device industry will be done. Finally, consideration will be given to a number of global factors that can have dramatic effects on our industry.

Handbook of Polymer Applications in Medicine and Medical Devices

Handbook of Polymer Applications in Medicine and Medical Devices
  • Author : Vinny R. Sastri
  • Publisher :Unknown
  • Release Date :2013-12-05
  • Total pages :368
  • ISBN : 9780128076767
GET BOOK HERE

Summary : Over the past 2000 years, many devices have been developed and used in the mitigation and diagnosis of diseases. The materials used in these devices have ranged from stone, wood, metal, ceramics, and most recently plastics. Medical devices have also evolved in sophistication and complexity over time. With the formalization of the scientific method in the seventeenth century such devices became more prevalent [1]. Many medical devices were manufactured by doctors or small companies and sold directly to the public with no government standards or oversight. With the explosion of medical technology in the early twentieth century, several intermediaries had evolved between the medical device industry and the public. In 1879, Dr E.R. Squibb, in an address to the Medical Society of the State of New York, proposed the enactment of a national statute to regulate food and drugs [2]. It was not until 27 years later that the Food and Drug Act of 1906 was introduced into the Congress and signed into law by President Theodore Roosevelt [3]. At that time, devices that were harmful to human safety and health proliferated the market but regulation of medical devices by the Bureau of Chemistry (the precursor to the Food and Drug Administration—FDA) was limited to challenging commercial products only after they had been released into the market. Devices in the marketplace that were defective, adulterated, or misbranded were seized and the device manufacturers were prosecuted in a court of law, but only after the products were sold in the market and caused harm to the end users. Thus, there was a strong need for regulating the devices before they entered the marketplace. An FDA report [4], issued in September 1970, detailed as many as 10,000 injuries and 731 deaths from ineffective medical devices. The report recommended the formation of a regulatory system and body that would enforce the production and sale of safe and effective devices to the public. All medical devices already on the market would be inventoried and classified into a three-tiered system based on their criticality of end use. It also detailed requirements for records and reports, registration and inspection of establishments, and uniform quality assurance programs called good manufacturing practices (GMP). After much lobbying by the FDA, Senate bill SR 510, “The Medical Device Amendments of 1973” was introduced by Senator Edward M. Kennedy and was passed by the Senate in 1975. House bill HR 11124, introduced by Representative Paul Rogers, was passed by the House in 1976. These bills eventually became the Medical Device Amendments of 1976, and were signed into law by President Nixon. The Medical Device Amendments of 1976 became the basis for the medical device regulation in the United States to control and regulate the production of finished devices and thus the device manufacturers themselves.

Plastics in Medical Devices

Plastics in Medical Devices
  • Author : Vinny R. Sastri
  • Publisher :Unknown
  • Release Date :2010-03-05
  • Total pages :352
  • ISBN : 9780815520283
GET BOOK HERE

Summary : No book has been published that gives a detailed description of all the types of plastic materials used in medical devices, the unique requirements that the materials need to comply with and the ways standard plastics can be modified to meet such needs. This book will start with an introduction to medical devices, their classification and some of the regulations (both US and global) that affect their design, production and sale. A couple of chapters will focus on all the requirements that plastics need to meet for medical device applications. The subsequent chapters describe the various types of plastic materials, their properties profiles, the advantages and disadvantages for medical device applications, the techniques by which their properties can be enhanced, and real-world examples of their use. Comparative tables will allow readers to find the right classes of materials suitable for their applications or new product development needs.

Handbook of Active Materials for Medical Devices

Handbook of Active Materials for Medical Devices
  • Author : Andres Diaz Lantada
  • Publisher :Unknown
  • Release Date :2011-09-28
  • Total pages :350
  • ISBN : 9789814303361
GET BOOK HERE

Summary : This book covers biodevices, mainly implantable or quirurgical, for the diagnosis or treatment of different pathologies, which benefit from the use of active materials as sensors or actuators. Such active or "intelligent" materials are capable of responding in a controlled way to different external physical or chemical stimuli by changing some of their properties. These materials can be used to design and develop sensors, actuators, and multifunctional systems with a large number of applications for developing biodevices and medical appliances. Current work on these fields entails problems related to synthesis, characterization, modeling, simulation, processing, and prototyping technologies, as well as device testing and validation, all of which are treated in depth in this book, for the several types of active or intelligent materials covered. The research presented in this book helps further development of medical devices, based on the additional functionalities that the use of active or "intelligent" materials, both as sensors and actuators, supplies. The main results exposed may help with the industrial expansion of this kind of materials as part of more complex systems.

Advanced Polymers in Medicine

Advanced Polymers in Medicine
  • Author : Francesco Puoci
  • Publisher :Unknown
  • Release Date :2014-12-02
  • Total pages :537
  • ISBN : 9783319124780
GET BOOK HERE

Summary : The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.

Handbook of Biodegradable Polymers

Handbook of Biodegradable Polymers
  • Author : Abraham J. Domb,Joseph Kost,David Wiseman
  • Publisher :Unknown
  • Release Date :1998-02-04
  • Total pages :544
  • ISBN : 1420049364
GET BOOK HERE

Summary : Handbook of Biodegradable Polymers, the seventh volume in the Drug Delivery and Targeting book series, provides a source manual for synthetic procedures, properties and applications of bioerodible polymers. The authors describe widely available materials such as polyactides, collagen and gelatin, as well as polymers of emerging importance, such as the genetically-engineered and elastin-based polymers which are either proprietary or in early stages of development. Section I addresses synthetic absorbable polymers, and Section 2 profiles natural, semi-synthetic and biosynthetic polymers. Section 3 discusses the surface characterization of degradable polymers, the modeling of biodegradation and non-medical polymers. This book is ideal for researchers from academia and industry as well as chemists, pharmacists and physicians who deal with biopolymers, drug delivery and targeting, bioengineering and implantable devices.

Encyclopedia of Polymer Applications, 3 Volume Set

Encyclopedia of Polymer Applications, 3 Volume Set
  • Author : Munmaya Mishra
  • Publisher :Unknown
  • Release Date :2018-12-17
  • Total pages :5250
  • ISBN : 9781351019408
GET BOOK HERE

Summary : Undoubtedly the applications of polymers are rapidly evolving. Technology is continually changing and quickly advancing as polymers are needed to solve a variety of day-to-day challenges leading to improvements in quality of life. The Encyclopedia of Polymer Applications presents state-of-the-art research and development on the applications of polymers. This groundbreaking work provides important overviews to help stimulate further advancements in all areas of polymers. This comprehensive multi-volume reference includes articles contributed from a diverse and global team of renowned researchers. It offers a broad-based perspective on a multitude of topics in a variety of applications, as well as detailed research information, figures, tables, illustrations, and references. The encyclopedia provides introductions, classifications, properties, selection, types, technologies, shelf-life, recycling, testing and applications for each of the entries where applicable. It features critical content for both novices and experts including, engineers, scientists (polymer scientists, materials scientists, biomedical engineers, macromolecular chemists), researchers, and students, as well as interested readers in academia, industry, and research institutions.

Handbook of Polymers

Handbook of Polymers
  • Author : George Wypych
  • Publisher :Unknown
  • Release Date :2016-02-05
  • Total pages :712
  • ISBN : 9781927885116
GET BOOK HERE

Summary : Handbook of Polymers, Second Edition, presents normalized, up-to-date polymer data in a consistent and easily referenceable layout. This new edition represents an update of the available data, including new values for many commercially available products, verification of existing data, and removal of older data where it is no longer useful. The book includes data on all major polymeric materials used by the plastics industry and all branches of the chemical industry, as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. The entire scope of the data is divided into sections to make data comparison and search easy, including synthesis, physical, mechanical, and rheological properties, chemical resistance, toxicity and environmental impact, and more. The data enables engineers and materials scientists to solve practical problems, be that in applications, research and development, or legislation. The most current grades of materials have been selected to provide readers with information that is characteristic of currently available products. Includes practical data on the most widely used polymers for engineers and materials scientists in design, manufacture, and applications research Presents data on polymer synthesis, properties, chemical resistance, processing, and their related environmental impacts Provides a comprehensive update to the data, including new information and the verification of existing datasets

Handbook of Active Materials for Medical Devices

Handbook of Active Materials for Medical Devices
  • Author : Andres Diaz Lantada
  • Publisher :Unknown
  • Release Date :2011-09-28
  • Total pages :350
  • ISBN : 9789814303361
GET BOOK HERE

Summary : This book covers biodevices, mainly implantable or quirurgical, for the diagnosis or treatment of different pathologies, which benefit from the use of active materials as sensors or actuators. Such active or "intelligent" materials are capable of responding in a controlled way to different external physical or chemical stimuli by changing some of their properties. These materials can be used to design and develop sensors, actuators, and multifunctional systems with a large number of applications for developing biodevices and medical appliances. Current work on these fields entails problems related to synthesis, characterization, modeling, simulation, processing, and prototyping technologies, as well as device testing and validation, all of which are treated in depth in this book, for the several types of active or intelligent materials covered. The research presented in this book helps further development of medical devices, based on the additional functionalities that the use of active or "intelligent" materials, both as sensors and actuators, supplies. The main results exposed may help with the industrial expansion of this kind of materials as part of more complex systems.

Natural-Based Polymers for Biomedical Applications

Natural-Based Polymers for Biomedical Applications
  • Author : Rui L. Reis,Nuno M. Neves,Joao F. Mano,Manuela E. Gomes,Alexandra P. Marques,Helena S. Azevedo
  • Publisher :Unknown
  • Release Date :2008-08-15
  • Total pages :832
  • ISBN : 9781845694814
GET BOOK HERE

Summary : Polymers from natural sources are particularly useful as biomaterials and in regenerative medicine, given their similarity to the extracellular matrix and other polymers in the human body. This important book reviews the wealth of research on both tried and promising new natural-based biomedical polymers, together with their applications as implantable biomaterials, controlled-release carriers or scaffolds for tissue engineering. The first part of the book reviews the sources, processing and properties of natural-based polymers for biomedical applications. Part two describes how the surfaces of polymer-based biomaterials can be modified to improve their functionality. The third part of the book discusses the use of natural-based polymers for biodegradable scaffolds and hydrogels in tissue engineering. Building on this foundation, Part four looks at the particular use of natural-gelling polymers for encapsulation, tissue engineering and regenerative medicine. The penultimate group of chapters reviews the use of natural-based polymers as delivery systems for drugs, hormones, enzymes and growth factors. The final part of the book summarises research on the key issue of biocompatibility. Natural-based polymers for biomedical applications is a standard reference for biomedical engineers, those studying and researching in this important area, and the medical community. Examines the sources, processing and properties of natural based polymers for biomedical applications Explains how the surfaces of polymer based biomaterials can be modified to improve their functionality Discusses the use of natural based polymers for hydrogels in tissue engineering, and in particular natural gelling polymers for encapsulation and regenerative medicine

Handbook of Polymers in Electronics

Handbook of Polymers in Electronics
  • Author : Bansi D. Malhotra
  • Publisher :Unknown
  • Release Date :2001-12-31
  • Total pages :474
  • ISBN : 1859572863
GET BOOK HERE

Summary : The Handbook of Polymers in Electronics has been designed to discuss the novel ways in which polymers can be used in the rapidly growing electronics industry. It provides discussion of the preparation and characterisation of suitable polymeric materials and their current and potential applications coupled with the fundamentals of electrical, optical and photophysical properties. It will thus serve the needs of those already active in the electronics field as well as new entrants to the industry.

Biomedical Applications of Hydrogels Handbook

Biomedical Applications of Hydrogels Handbook
  • Author : Raphael M. Ottenbrite,Kinam Park,Teruo Okano
  • Publisher :Unknown
  • Release Date :2010-09-05
  • Total pages :432
  • ISBN : 144195919X
GET BOOK HERE

Summary : Hydrogels are networks of polymer chains which can produce a colloidal gel containing over 99 per cent water. The superabsorbency and permeability of naturally occurring and synthetic hydrogels give this class of materials an amazing array of uses. These uses range from wound dressings and skin grafts to oxygen-permeable contact lenses to biodegradable delivery systems for drugs or pesticides and scaffolds for tissue engineering and regenerative medicine. Biomedical Applications of Hydrogels Handbook provides a comprehensive description of this diverse class of materials, covering both synthesis and properties and a broad range of research and commercial applications. The Handbook is divided into four sections: Stimuli-Sensitive Hydrogels, Hydrogels for Drug Delivery, Hydrogels for Tissue Engineering, and Hydrogels with Unique Properties. Key Features: Provides comprehensive coverage of the basic science and applications of a diverse class of materials Includes both naturally occurring and synthetic hydrogels Edited and written by world leaders in the field.

UHMWPE Biomaterials Handbook

UHMWPE Biomaterials Handbook
  • Author : Steven M. Kurtz
  • Publisher :Unknown
  • Release Date :2009-04-27
  • Total pages :568
  • ISBN : 008088444X
GET BOOK HERE

Summary : UHMWPE Biomaterials Handbook describes the science, development, properties and application of of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints. This material is currently used in 1.4 million patients around the world every year for use in the hip, knee, upper extremities, and spine. Since the publication of the 1st edition there have been major advances in the development and clinical adoption of highly crosslinked UHMWPE for hip and knee replacement. There has also been a major international effort to introduce Vitamin E stabilized UHMWPE for patients. The accumulated knowledge on these two classes of materials are a key feature of the 2nd edition, along with an additional 19 additional chapters providing coverage of the key engineering aspects (biomechanical and materials science) and clinical/biological performance of UHMWPE, providing a more complete reference for industrial and academic materials specialists, and for surgeons and clinicians who require an understanding of the biomaterials properties of UHMWPE to work successfully on patient applications. The UHMWPE Handbook is the comprehensive reference for professionals, researchers, and clinicians working with biomaterials technologies for joint replacement New to this edition: 19 new chapters keep readers up to date with this fast moving topic, including a new section on UHMWPE biomaterials; highly crosslinked UHMWPE for hip and knee replacement; Vitamin E stabilized UHMWPE for patients; clinical performance, tribology an biologic interaction of UHMWPE State-of-the-art coverage of UHMWPE technology, orthopedic applications, biomaterial characterisation and engineering aspects from recognised leaders in the field

Handbook for the Chemical Analysis of Plastic and Polymer Additives, Second Edition

Handbook for the Chemical Analysis of Plastic and Polymer Additives, Second Edition
  • Author : Michael Bolgar,Jack Hubball,Joseph Groeger,Susan Meronek
  • Publisher :Unknown
  • Release Date :2015-09-25
  • Total pages :638
  • ISBN : 9781439860755
GET BOOK HERE

Summary : Polymers have undoubtedly changed the world through many products that improve our lives. However, additives used to modify the overall characteristics of these materials may not be fully disclosed or understood. These additives may present possible environmental and health hazards. It is important to monitor consumer products for these compounds using high-quality reference materials and dependable analytical techniques. The Handbook for the Chemical Analysis of Plastic and Polymer Additives, Second Edition provides the necessary tools for chemists to obtain a more complete listing of additives present in a particular polymeric matrix. It is designed to serve as a valuable source for those monitoring a polymer/plastic material for regulatory or internal compliance. It also helps analysts to correctly identify the complex nature of the materials that have been added to the polymer/plastic. With 50 additional compounds, this second edition nearly doubles the number of additives in several categories, including processing aids, antistatic compounds, mould release products, and blowing agents. It includes a listing that can be cross-referenced by trade name, chemical name, CAS number, and even key mass unit ions from the GC/MS run. Addressing additives from an analytical viewpoint, this comprehensive handbook helps readers identify the additives in plastics. This information can be used to assess compliance with regulations issued by the FDA, US EPA, EU, and other agencies.

Handbook of Materials for Nanomedicine

Handbook of Materials for Nanomedicine
  • Author : Vladimir Torchilin,Mansoor M. Amiji
  • Publisher :Unknown
  • Release Date :2011-11
  • Total pages :868
  • ISBN : 9789814267588
GET BOOK HERE

Summary : The fast developing field of nanomedicine uses a broad variety of materials to serve as delivery systems for drugs, genes, and diagnostic agents. This book is the first attempt to put under one cover all major available information about these materials, both still on experimental levels and already applied in patients.