Download Measuring Data Quality For Ongoing Improvement Book PDF

Download full Measuring Data Quality For Ongoing Improvement books PDF, EPUB, Tuebl, Textbook, Mobi or read online Measuring Data Quality For Ongoing Improvement anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Measuring Data Quality for Ongoing Improvement

Measuring Data Quality for Ongoing Improvement
  • Author : Laura Sebastian-Coleman
  • Publisher :Unknown
  • Release Date :2012-12-31
  • Total pages :376
  • ISBN : 9780123977540
GET BOOK HERE

Summary : The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You’ll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You’ll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges Enables discussions between business and IT with a non-technical vocabulary for data quality measurement Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation

Measuring Data Quality for Ongoing Improvement

Measuring Data Quality for Ongoing Improvement
  • Author : Laura Sebastian-Coleman
  • Publisher :Unknown
  • Release Date :2013-01-25
  • Total pages :376
  • ISBN : 0123970334
GET BOOK HERE

Summary : The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You'll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You'll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges Enables discussions between business and IT with a non-technical vocabulary for data quality measurement Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation

Measuring Data Quality for Ongoing Improvement

Measuring Data Quality for Ongoing Improvement
  • Author : Laura Sebastian-Coleman
  • Publisher :Unknown
  • Release Date :2013-01-25
  • Total pages :376
  • ISBN : 0123970334
GET BOOK HERE

Summary : The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You'll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You'll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges Enables discussions between business and IT with a non-technical vocabulary for data quality measurement Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation

Measuring Data Quality for Ongoing Improvement

Measuring Data Quality for Ongoing Improvement
  • Author : Laura Sebastian-Coleman
  • Publisher :Unknown
  • Release Date :2013-01-25
  • Total pages :376
  • ISBN : 0123970334
GET BOOK HERE

Summary : The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You'll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You'll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges Enables discussions between business and IT with a non-technical vocabulary for data quality measurement Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation

The Practitioner's Guide to Data Quality Improvement

The Practitioner's Guide to Data Quality Improvement
  • Author : David Loshin
  • Publisher :Unknown
  • Release Date :2010-11-22
  • Total pages :432
  • ISBN : 0080920349
GET BOOK HERE

Summary : The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.

Data Quality Assessment

Data Quality Assessment
  • Author : Arkady Maydanchik
  • Publisher :Unknown
  • Release Date :2007-04-01
  • Total pages :336
  • ISBN : 9781634620475
GET BOOK HERE

Summary : Imagine a group of prehistoric hunters armed with stone-tipped spears. Their primitive weapons made hunting large animals, such as mammoths, dangerous work. Over time, however, a new breed of hunters developed. They would stretch the skin of a previously killed mammoth on the wall and throw their spears, while observing which spear, thrown from which angle and distance, penetrated the skin the best. The data gathered helped them make better spears and develop better hunting strategies. Quality data is the key to any advancement, whether it’s from the Stone Age to the Bronze Age. Or from the Information Age to whatever Age comes next. The success of corporations and government institutions largely depends on the efficiency with which they can collect, organize, and utilize data about products, customers, competitors, and employees. Fortunately, improving your data quality doesn’t have to be such a mammoth task. DATA QUALITY ASSESSMENT is a must read for anyone who needs to understand, correct, or prevent data quality issues in their organization. Skipping theory and focusing purely on what is practical and what works, this text contains a proven approach to identifying, warehousing, and analyzing data errors – the first step in any data quality program. Master techniques in: • Data profiling and gathering metadata • Identifying, designing, and implementing data quality rules • Organizing rule and error catalogues • Ensuring accuracy and completeness of the data quality assessment • Constructing the dimensional data quality scorecard • Executing a recurrent data quality assessment This is one of those books that marks a milestone in the evolution of a discipline. Arkady's insights and techniques fuel the transition of data quality management from art to science -- from crafting to engineering. From deep experience, with thoughtful structure, and with engaging style Arkady brings the discipline of data quality to practitioners. David Wells, Director of Education, Data Warehousing Institute

Navigating the Labyrinth

Navigating the Labyrinth
  • Author : Laura Sebastian-Coleman
  • Publisher :Unknown
  • Release Date :2018-05-09
  • Total pages :208
  • ISBN : 9781634623773
GET BOOK HERE

Summary : An Executive Guide to Data Management

Data Quality

Data Quality
  • Author : Jack E. Olson
  • Publisher :Unknown
  • Release Date :2003-01-09
  • Total pages :300
  • ISBN : 0080503691
GET BOOK HERE

Summary : Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data is increasingly important as companies continue to find new ways to use it. Likewise, improving the accuracy of data in information systems is fast becoming a major goal as companies realize how much it affects their bottom line. Data profiling is a new technology that supports and enhances the accuracy of databases throughout major IT shops. Jack Olson explains data profiling and shows how it fits into the larger picture of data quality. * Provides an accessible, enjoyable introduction to the subject of data accuracy, peppered with real-world anecdotes. * Provides a framework for data profiling with a discussion of analytical tools appropriate for assessing data accuracy. * Is written by one of the original developers of data profiling technology. * Is a must-read for any data management staff, IT management staff, and CIOs of companies with data assets.

Executing Data Quality Projects

Executing Data Quality Projects
  • Author : Danette McGilvray
  • Publisher :Unknown
  • Release Date :2008-09-01
  • Total pages :352
  • ISBN : 9780080558394
GET BOOK HERE

Summary : Information is currency. Recent studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. In this important and timely new book, Danette McGilvray presents her “Ten Steps approach to information quality, a proven method for both understanding and creating information quality in the enterprise. Her trademarked approach—in which she has trained Fortune 500 clients and hundreds of workshop attendees—applies to all types of data and to all types of organizations. * Includes numerous templates, detailed examples, and practical advice for executing every step of the “Ten Steps approach. * Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices. * A companion Web site includes links to numerous data quality resources, including many of the planning and information-gathering templates featured in the text, quick summaries of key ideas from the Ten Step methodology, and other tools and information available online.

Data Quality

Data Quality
  • Author : Rupa Mahanti
  • Publisher :Unknown
  • Release Date :2019-03-18
  • Total pages :526
  • ISBN : 9780873899772
GET BOOK HERE

Summary : “This is not the kind of book that you’ll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective.” from the foreword by Thomas C. Redman, Ph.D., “the Data Doc” Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout.

Data Governance

Data Governance
  • Author : Neera Bhansali
  • Publisher :Unknown
  • Release Date :2013-06-17
  • Total pages :268
  • ISBN : 9781439879146
GET BOOK HERE

Summary : As organizations deploy business intelligence and analytic systems to harness business value from their data assets, data governance programs are quickly gaining prominence. And, although data management issues have traditionally been addressed by IT departments, organizational issues critical to successful data management require the implementation of enterprise-wide accountabilities and responsibilities. Data Governance: Creating Value from Information Assets examines the processes of using data governance to manage data effectively. Addressing the complete life cycle of effective data governance—from metadata management to privacy and compliance—it provides business managers, IT professionals, and students with an integrated approach to designing, developing, and sustaining an effective data governance strategy. Explains how to align data governance with business goals Describes how to build successful data stewardship with a governance framework Outlines strategies for integrating IT and data governance frameworks Supplies business-driven and technical perspectives on data quality management, metadata management, data access and security, and data lifecycle The book summarizes the experiences of global experts in the field and addresses critical areas of interest to the information systems and management community. Case studies from healthcare and financial sectors, two industries that have successfully leveraged the potential of data-driven strategies, provide further insights into real-time practice. Facilitating a comprehensive understanding of data governance, the book addresses the burning issue of aligning data assets to both IT assets and organizational strategic goals. With a focus on the organizational, operational, and strategic aspects of data governance, the text provides you with the understanding required to leverage, derive, and sustain maximum value from the informational assets housed in your IT infrastructure.

Multi-Domain Master Data Management

Multi-Domain Master Data Management
  • Author : Mark Allen,Dalton Cervo
  • Publisher :Unknown
  • Release Date :2015-03-21
  • Total pages :244
  • ISBN : 9780128011478
GET BOOK HERE

Summary : Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data.

The Goal

The Goal
  • Author : Eliyahu M. Goldratt,Jeff Cox
  • Publisher :Unknown
  • Release Date :2016-08-12
  • Total pages :374
  • ISBN : 9781351982115
GET BOOK HERE

Summary : Alex Rogo is a harried plant manager working ever more desperately to try and improve performance. His factory is rapidly heading for disaster. So is his marriage. He has ninety days to save his plant - or it will be closed by corporate HQ, with hundreds of job losses. It takes a chance meeting with a colleague from student days - Jonah - to help him break out of conventional ways of thinking to see what needs to be done. Described by Fortune as a 'guru to industry' and by Businessweek as a 'genius', Eliyahu M. Goldratt was an internationally recognized leader in the development of new business management concepts and systems. This 20th anniversary edition includes a series of detailed case study interviews by David Whitford, Editor at Large, Fortune Small Business, which explore how organizations around the world have been transformed by Eli Goldratt's ideas. The story of Alex's fight to save his plant contains a serious message for all managers in industry and explains the ideas which underline the Theory of Constraints (TOC) developed by Eli Goldratt. Written in a fast-paced thriller style, The Goal is the gripping novel which is transforming management thinking throughout the Western world. It is a book to recommend to your friends in industry - even to your bosses - but not to your competitors!

Business Information Systems

Business Information Systems
  • Author : Witold Abramowicz,Rafael Corchuelo
  • Publisher :Unknown
  • Release Date :2019-07-13
  • Total pages :541
  • ISBN : 9783030204853
GET BOOK HERE

Summary : The two-volume set LNBIP 353 and 354 constitutes the proceedings of the 22nd International Conference on Business Information Systems, BIS 2019, held in Seville, Spain, in June 2019. The theme of the BIS 2019 was "Data Science for Business Information Systems", inspiring researchers to share theoretical and practical knowledge of the different aspects related to Data Science in enterprises. The 67 papers presented in these proceedings were carefully reviewed and selected from 223 submissions. The contributions were organized in topical sections as follows: Part I: Big Data and Data Science; Artificial Intelligence; ICT Project Management; and Smart Infrastructure. Part II: Social Media and Web-based Systems; and Applications, Evaluations and Experiences.

Handbook of EHealth Evaluation

Handbook of EHealth Evaluation
  • Author : Francis Yin Yee Lau,Craig Kuziemsky
  • Publisher :Unknown
  • Release Date :2016-11
  • Total pages :487
  • ISBN : 1550586017
GET BOOK HERE

Summary : To order please visit https://onlineacademiccommunity.uvic.ca/press/books/ordering/

Journey to Data Quality

Journey to Data Quality
  • Author : Yang W. Lee,Leo L. Pipino,Richard Y. Wang,James D. Funk
  • Publisher :Unknown
  • Release Date :2009
  • Total pages :226
  • ISBN : 0262513358
GET BOOK HERE

Summary : A guide for assessing an organization's data quality practice and a roadmap for implementing a viable data and information quality management program, based on rigorous research and drawing on real-world examples. All organizations today confront data quality problems, both systemic and structural. Neither ad hoc approaches nor fixes at the systems leve--installing the latest software or developing an expensive data warehouse--solve the basic problem of bad data quality practices. Journey to Data Quality offers a roadmap that can be used by practitioners, executives, and students for planning and implementing a viable data and information quality management program. This practical guide, based on rigorous research and informed by real-world examples, describes the challenges of data management and provides the principles, strategies, tools, and techniques necessary to meet them. The authors, all leaders in the data quality field for many years, discuss how to make the economic case for data quality and the importance of getting an organization's leaders on board. They outline different approaches for assessing data, both subjectively (by users) and objectively (using sampling and other techniques). They describe real problems and solutions, including efforts to find the root causes of data quality problems at a healthcare organization and data quality initiatives taken by a large teaching hospital. They address setting company policy on data quality and, finally, they consider future challenges on the journey to data quality.

Data Driven

Data Driven
  • Author : Thomas C. Redman
  • Publisher :Unknown
  • Release Date :2008-09-22
  • Total pages :257
  • ISBN : 9781422163641
GET BOOK HERE

Summary : Your company's data has the potential to add enormous value to every facet of the organization -- from marketing and new product development to strategy to financial management. Yet if your company is like most, it's not using its data to create strategic advantage. Data sits around unused -- or incorrect data fouls up operations and decision making. In Data Driven, Thomas Redman, the "Data Doc," shows how to leverage and deploy data to sharpen your company's competitive edge and enhance its profitability. The author reveals: · The special properties that make data such a powerful asset · The hidden costs of flawed, outdated, or otherwise poor-quality data · How to improve data quality for competitive advantage · Strategies for exploiting your data to make better business decisions · The many ways to bring data to market · Ideas for dealing with political struggles over data and concerns about privacy rights Your company's data is a key business asset, and you need to manage it aggressively and professionally. Whether you're a top executive, an aspiring leader, or a product-line manager, this eye-opening book provides the tools and thinking you need to do that.

Data Quality

Data Quality
  • Author : Rupa Mahanti
  • Publisher :Unknown
  • Release Date :2019-03-18
  • Total pages :526
  • ISBN : 9780873899772
GET BOOK HERE

Summary : “This is not the kind of book that you’ll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective.” from the foreword by Thomas C. Redman, Ph.D., “the Data Doc” Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout.

The Data Quality Blueprint

The Data Quality Blueprint
  • Author : John Parkinson
  • Publisher :Unknown
  • Release Date :2016-04-27
  • Total pages :660
  • ISBN : 0993584306
GET BOOK HERE

Summary : Poor Data Quality is a problem in every sector. This book, drawing on both the author's project management experience and also his data quality, data strategy, data governance and data management experience, describes a clear practical step by step blueprint that organisations can use to create a long lasting data quality solution.

The Health Care Data Guide

The Health Care Data Guide
  • Author : Lloyd P. Provost,Sandra Murray
  • Publisher :Unknown
  • Release Date :2011-12-06
  • Total pages :480
  • ISBN : 9781118085882
GET BOOK HERE

Summary : The Health Care Data Guide is designed to help students and professionals build a skill set specific to using data for improvement of health care processes and systems. Even experienced data users will find valuable resources among the tools and cases that enrich The Health Care Data Guide. Practical and step-by-step, this book spotlights statistical process control (SPC) and develops a philosophy, a strategy, and a set of methods for ongoing improvement to yield better outcomes. Provost and Murray reveal how to put SPC into practice for a wide range of applications including evaluating current process performance, searching for ideas for and determining evidence of improvement, and tracking and documenting sustainability of improvement. A comprehensive overview of graphical methods in SPC includes Shewhart charts, run charts, frequency plots, Pareto analysis, and scatter diagrams. Other topics include stratification and rational sub-grouping of data and methods to help predict performance of processes. Illustrative examples and case studies encourage users to evaluate their knowledge and skills interactively and provide opportunity to develop additional skills and confidence in displaying and interpreting data. Companion Web site: www.josseybass.com/go/provost

Ethical Data and Information Management

Ethical Data and Information Management
  • Author : Katherine O'Keefe,Daragh O Brien
  • Publisher :Unknown
  • Release Date :2018-05-03
  • Total pages :344
  • ISBN : 9780749482053
GET BOOK HERE

Summary : Information and how we manage, process and govern it is becoming increasingly important as organizations ride the wave of the big data revolution. Ethical Data and Information Management offers a practical guide for people in organizations who are tasked with implementing information management projects. It sets out, in a clear and structured way, the fundamentals of ethics, and provides practical and pragmatic methods for organizations to embed ethical principles and practices into their management and governance of information. Written by global experts in the field, Ethical Data and Information Management is an important book addressing a topic high on the information management agenda. Key coverage includes how to build ethical checks and balances into data governance decision making; using quality management methods to assess and evaluate the ethical nature of processing during design; change methods to communicate ethical values; how to avoid common problems that affect ethical action; and how to make the business case for ethical behaviours.