Download Nanomagnetism And Spintronics Book PDF

Download full Nanomagnetism And Spintronics books PDF, EPUB, Tuebl, Textbook, Mobi or read online Nanomagnetism And Spintronics anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
  • Author : Teruya Shinjo
  • Publisher :Unknown
  • Release Date :2009-06-29
  • Total pages :352
  • ISBN : 0080932169
GET BOOK HERE

Summary : Spintronics is a newly developing area in the field of magnetism, in which the interplay of magnetism and transport phenomena is studied experimentally and theoretically. This book introduces the recent progresses in the research relating to spintronics. * Presents in-depth analysis of this fascinating and technologically important new branch of nanoscience * Edited text with contributions from acknowledged leaders in the field * This handbook and guide will appeal to students and researchers in the fields of electronic devices and materials

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
  • Author : Farzad Nasirpouri,Alain Nogaret
  • Publisher :Unknown
  • Release Date :2011
  • Total pages :384
  • ISBN : 9789814273053
GET BOOK HERE

Summary : Nanomagnetism and spintronics are two close subfields of nanoscience, explaining the effect of substantial magnetic properties of matter when the materials fabrication is realized at a comparable length size. Nanomagnetism deals with the magnetic phenomena specific to the structures having dimensions in the submicron range. The fact that the electronic transport properties of materials are dependent on the magnetic properties' artificial nanostructures, i.e., giant magnetoresistance (GMR) or tunneling magnetoresistance (TMR), has revolutionized spintronics science and technology. This book explains the concepts of nanomagnetism and spintronics by viewing the most recent research works from internationally distinguished research groups. Placing special emphasis on crucial fundamental and technical aspects of nanomagnetism and spintronics, it serves as a one-stop reference for universities offering postgraduate programs in nanotechnology or related disciplines. This unique book deals with all three stages required for conducting research in nanomagnetism and spintronics including fabrication, characterization and applications of nanomagnetic and spintronics materials, providing general concepts and an insightful overview of this subject for research students and scientists from different backgrounds investigating the multidisciplinary area of nanotechnology.

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
  • Author : Teruya Shinjo
  • Publisher :Unknown
  • Release Date :2013-10-07
  • Total pages :372
  • ISBN : 9780444632777
GET BOOK HERE

Summary : The concise and accessible chapters of Nanomagnetism and Spintronics, Second Edition, cover the most recent research in areas of spin-current generation, spin-calorimetric effect, voltage effects on magnetic properties, spin-injection phenomena, giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR). Spintronics is a cutting-edge area in the field of magnetism that studies the interplay of magnetism and transport phenomena, demonstrating how electrons not only have charge but also spin. This second edition provides the background to understand this novel physical phenomenon and focuses on the most recent developments and research relating to spintronics. This exciting new edition is an essential resource for graduate students, researchers, and professionals in industry who want to understand the concepts of spintronics, and keep up with recent research, all in one volume. Provides a concise, thorough evaluation of current research Surveys the important findings up to 2012 Examines the future of devices and the importance of spin current

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
  • Author : Yoshishige Suzuki,Ashwin A. Tulapurkar,Youichi Shiota,Claude Chappert
  • Publisher :Unknown
  • Release Date :2013-10-07
  • Total pages :372
  • ISBN : 9780128086773
GET BOOK HERE

Summary : Current and voltage applied to the magnetic nanopillars induce a spin injection and an accumulation of nonequilibrium charges in a nanosize magnetic cell and result a spin torque exerted on the magnetic moment. Using such torques, we may amplify a precession of magnetization and induct a magnetization switching. These phenomena provide new techniques to write information into tiny magnetic cells and to construct oscillators and rectifiers that are several tens of nanometers in size. In this chapter, spin injections, and current and voltage-induced spin torques in magnetic multilayers, which show giant magnetoresistance effect in current-perpendicular-to-plane (CPP-GMR) geometry, and magnetic tunneling junctions are described. Further, mechanisms of spin injection and voltage-induced magnetization switching and its high-speed observations are explained. Then, phenomena related to spin injection, namely, spin-transfer oscillation and the spin-torque diode effect, are described. Finally, applications related to the spin-injection technology are reviewed.

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
  • Author : Jun-ichiro Inoue
  • Publisher :Unknown
  • Release Date :2013-10-07
  • Total pages :372
  • ISBN : 9780128086766
GET BOOK HERE

Summary : Novel magnetotransport phenomena appear when magnet sizes become nanoscale. Typical examples of such phenomena are giant magnetoresistance (GMR) in magnetic multilayers, tunnel magnetoresistance (TMR) in ferromagnetic tunnel junctions, and ballistic magnetoresistance (BMR) in magnetic nanocontacts. In this chapter, we first briefly review the relationship between spin-dependent resistivity and electronic structures in metals and alloys, and describe microscopic methods for investigating electrical transport. We then review the essential aspects of GMR, TMR, and BMR, emphasizing the role of the electronic structures of the constituent metals of these junctions and the effects of roughness on the electrical resistivity (or resistance). The important factors that control GMR are shown to be the spin-dependent random potential at interfaces and band matching/mismatching between magnetic and nonmagnetic layers. For TMR, several factors are shown to be important in determining the MR ratio, including the shape of the Fermi surface of the electrodes, the symmetry of the wave functions, electron scattering at interfaces, and spin-slip tunneling. An interpretation of TMR in Fe/MgO/Fe and of an oscillation of TMR is presented. TMR in granular films and in the Coulomb-blockade regime is also described. We also provide a brief explanation for other MR effects, such as normal MR, anisotropic MR (AMR) and colossal MR (CMR) in order to clarify the essential difference between these MRs and GMR, TMR, and BMR. These MR effects are attributed to the spin-dependent electrical currents produced in metallic ferromagnets. After the discovery of these different MR effects, the role of spin current was proposed, for example, spin Hall effect and the effects of spin transfer torque, which will be briefly explained in this chapter. The former orginates from the spin–orbit interaction, and can be observed even in nonmagnetic metals and semiconductors. It is closely related to the anomalous Hall effect observed in ferromagnetic metals. The spin transfer torque is an inverse effect of the MR. The MR is the resistivity change produced by magnetization rotation in ferromagnetic junctions, while the spin transfer torque is an effect in which spin-polarized current makes the magnetization rotate. Finally, we briefly introduce the coupled effects of spin, charge, and heat transport, which are called spin caloritronics.

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
  • Author : Fumihiro Matsukura,Hideo Ohno
  • Publisher :Unknown
  • Release Date :2013-10-07
  • Total pages :372
  • ISBN : 9780128086810
GET BOOK HERE

Summary : III–V compound semiconductors such as GaAs and InAs alloyed with Mn exhibit ferromagnetism. The magnetic, electrical, and optical properties of ferromagnetic III–V semiconductors are first compiled along with the way to prepare the epitaxial films and the effect of postgrowth annealing. Theories available to explain the magnetism in these alloys are then presented. Because the ferromagnetic semiconductors are compatible with epitaxial III–V heterostructures, a number of device structures have been examined and shown to reveal a wide variety of phenomena that either cannot be realized or are very difficult to observe in ferromagnetic metal structures. The unique properties revealed by ferromagnetic semiconductor structures, ranging from reversible electric field control of ferromagnetic phase transition to generating velocity versus current-density curves of current-induced domain wall motion, are then reviewed. The prospect of realizing high-transition temperature is discussed in the last section.

Handbook of Nanomagnetism

Handbook of Nanomagnetism
  • Author : Rosa A. Lukaszew
  • Publisher :Unknown
  • Release Date :2015-10-06
  • Total pages :304
  • ISBN : 9789814613057
GET BOOK HERE

Summary : This unique handbook compiles and details cutting-edge research in nanomagnetism and its applications in spintronics, magnetoplasmonics, and nonlinear magneto-optics. Fundamental aspects of magnetism relevant to nanodevices and new spin-transfer torque random-access memory (STT-RAM), current-induced domain wall motion memory, and spin torque oscillators, as well as highly anisotropic materials and topics on magnetization damping are developed in detail in the book. New paradigms such as molecule-based magnets (MBMs), which are a promisingly adaptive class of solids poised to open new frontiers of exploration, are also covered. The relationship between magnetism and nonlinear optics and the new field of magnetoplasmonics is also developed in detail. The book also includes a thorough chapter on spin-polarized scanning tunneling microscopy (SP-STM), which enables studying magnetic phenomena on surfaces with real-space imaging and spectroscopy techniques down to the atomic level. All these topics are developed by an interdisciplinary team of leading experts in their pertinent fields. The book will certainly appeal to anyone involved in nanomagnetism and its application in spintronic nanodevices and nonlinear magneto-optics.

Principles of Nanomagnetism

Principles of Nanomagnetism
  • Author : Alberto P. Guimarães
  • Publisher :Unknown
  • Release Date :2017-08-08
  • Total pages :330
  • ISBN : 9783319594095
GET BOOK HERE

Summary : The second edition of this book on nanomagnetism presents the basics and latest studies of low-dimensional magnetic nano-objects. It highlights the intriguing properties of nanomagnetic objects, such as thin films, nanoparticles, nanowires, nanotubes, nanodisks and nanorings as well as novel phenomena like spin currents. It also describes how nanomagnetism was an important factor in the rapid evolution of high-density magnetic recording and is developing into a decisive element of spintronics. Further, it presents a number of biomedical applications. With exercises and solutions, it serves as a graduate textbook.

Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing

Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing
  • Author : Jayasimha Atulasimha,Supriyo Bandyopadhyay
  • Publisher :Unknown
  • Release Date :2016-03-07
  • Total pages :352
  • ISBN : 9781118869260
GET BOOK HERE

Summary : Nanomagnetic and spintronic computing devices are strong contenders for future replacements of CMOS. This is an important and rapidly evolving area with the semiconductor industry investing significantly in the study of nanomagnetic phenomena and in developing strategies to pinpoint and regulate nanomagnetic reliably with a high degree of energy efficiency. This timely book explores the recent and on-going research into nanomagnetic-based technology. Key features: Detailed background material and comprehensive descriptions of the current state-of-the-art research on each topic. Focuses on direct applications to devices that have potential to replace CMOS devices for computing applications such as memory, logic and higher order information processing. Discusses spin-based devices where the spin degree of freedom of charge carriers are exploited for device operation and ultimately information processing. Describes magnet switching methodologies to minimize energy dissipation. Comprehensive bibliographies included for each chapter enabling readers to conduct further research in this field. Written by internationally recognized experts, this book provides an overview of a rapidly burgeoning field for electronic device engineers, field-based applied physicists, material scientists and nanotechnologists. Furthermore, its clear and concise form equips readers with the basic understanding required to comprehend the present stage of development and to be able to contribute to future development. Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing is also an indispensable resource for students and researchers interested in computer hardware, device physics and circuits design.

Nanomagnetism

Nanomagnetism
  • Author : Anonim
  • Publisher :Unknown
  • Release Date :2006-03-27
  • Total pages :348
  • ISBN : 0080457177
GET BOOK HERE

Summary : Nanoscience is of central importance in the physical and biological sciences and is now pervasive in technology. However nanomagnetism has a special role to play as magnetic properties depend uniquely on both dimensionality and lengthscales. Nanomagnetism is already central to data storage, sensor and device technologies but is increasingly being used in the life sciences and medicine. This volume aims to introduce scientists, computer scientists, engineers and technologists from diverse fields to this fascinating and technologically important new branch of nanoscience. The volume should appeal to both the interested general reader but also to the researcher wishing to obtain an overview of this fast moving field. The contributions come from acknowledged leaders in the field who each give authoritative accounts of key fundamental aspects of nanomagnetism to which they have themselves made a major contribution. After a brief introduction by the editors, Wu first surveys the fundamental properties of magnetic nanostructures. The interlayer exchange interactions within magnetic multilayer structures is next discussed by Stiles. Camley then discusses the static, dynamic and thermal properties of magnetic multilayers and nanostructures, followed by an account of the phenomenon of exchange anisotropy by Berkowitz and Kodama. This latter phenomenon is widely in current read head devices for example. The transport properties of nanostructures also are spectacular, and again underpin computer technology, as we see from the discussion of giant magnetoresistance (GMR) and tunnelling magnetoresistance (TMR) presented by Fert and his colleagues. Beyond GMR and TMR we look to the field of spintronics where new electronic devices are envisioned and for which quantum computing may depend as discussed in the chapter by Flatte and Jonker. The volume concludes with discussion of the recently discovered phenomenon of current induced switching of magnetization by Edwards and Mathon. * Subject is in the forefront of nanoscience * All Section authors are leading figures in this key field * Presentations are accessible to non specialists, with focus on underlying fundamentals

Magnetic Nanostructures

Magnetic Nanostructures
  • Author : Hartmut Zabel,Michael Farle
  • Publisher :Unknown
  • Release Date :2012-09-15
  • Total pages :268
  • ISBN : 9783642320422
GET BOOK HERE

Summary : Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
  • Author : Teruo Ono,Teruya Shinjo
  • Publisher :Unknown
  • Release Date :2013-10-07
  • Total pages :372
  • ISBN : 9780128086780
GET BOOK HERE

Summary : Dynamical behavior of magnetic domain wall (DW) is one of the main issues in the field of spintronics. In this chapter, several experimental studies in DW dynamics in nanomagnetic systems are described. For the study of DW motion in nanoscale wires, samples with a trilayer structure, ferromagnetic/nonmagnetic/ferromagnetic, were prepared and the position of DW was estimated from electrical resistance measurements using giant magnetoresistance principle. The velocity of DW driven by an external field has been evaluated from the resistance change. On the other hand, current-driven DW motion in a single wire of ferromagnetic layer was studied by magnetic force microscopy (MFM). All-electrical control and local detection of multiple magnetic DWs are also shown. Magnetic vortex structures are realized in nanoscale ferromagnetic dot systems. The behavior of vortex core magnetization was observed by MFM. Recent topics such as the switching of vortex core driven by a high frequency AC are introduced. Furthermore, all-electrical operation of a magnetic vortex core memory cell is demonstrated.

Introduction to Spintronics

Introduction to Spintronics
  • Author : Supriyo Bandyopadhyay,Marc Cahay
  • Publisher :Unknown
  • Release Date :2008-03-20
  • Total pages :536
  • ISBN : 9781420004748
GET BOOK HERE

Summary : Using spin to replace or augment the role of charge in signal processing devices, computing systems and circuits may improve speed, power consumption, and device density in some cases—making the study of spinone of the fastest-growing areas in micro- and nanoelectronics. With most of the literature on the subject still highly advanced and heavily theoretical, the demand for a practical introduction to the concepts relating to spin has only now been filled. Explains effects such as giant magnetoresistance, the subject of the 2007 Nobel Prize in physics Introduction to Spintronics is an accessible, organized, and progressive presentation of the quantum mechanical concept of spin. The authors build a foundation of principles and equations underlying the physics, transport, and dynamics of spin in solid state systems. They explain the use of spin for encoding qubits in quantum logic processors; clarify how spin-orbit interaction forms the basis for certain spin-based devices such as spintronic field effect transistors; and discuss the effects of magnetic fields on spin-based device performance. Covers active hybrid spintronic devices, monolithic spintronic devices, passive spintronic devices, and devices based on the giant magnetoresistance effect The final chapters introduce the burgeoning field of spin-based reversible logic gates, spintronic embodiments of quantum computers, and other topics in quantum mechanics that have applications in spintronics. An Introduction to Spintronics provides the knowledge and understanding of the field needed to conduct independent research in spintronics.

Noise in Spintronics

Noise in Spintronics
  • Author : Farkhad Aliev,Juan Pedro Cascales
  • Publisher :Unknown
  • Release Date :2018-09-04
  • Total pages :338
  • ISBN : 9781351617383
GET BOOK HERE

Summary : This book covers the main physical mechanisms and the different contributions (1/f noise, shot noise, etc.) behind electronic fluctuations in various spintronic devices. It presents the first comprehensive summary of fundamental noise mechanisms in both electronic and spintronic devices and is therefore unique in that aspect. The pedagogic introduction to noise is complemented by a detailed description of how one could set up a noise measurement experiment in the lab. A further extensive description of the recent progress in understanding and controlling noise in spintronics, including the boom in 2D devices, molecular spintronics, and field sensing, is accompanied by both numerous bibliography references and tens of case studies on the fundamental aspects of noise and on some important qualitative steps to understand noise in spintronics. Moreover, a detailed discussion of unsolved problems and outlook make it an essential textbook for scientists and students desiring to exploit the information hidden in noise in both spintronics and conventional electronics.

Simple Models of Magnetism

Simple Models of Magnetism
  • Author : Ralph Skomski
  • Publisher :Unknown
  • Release Date :2008-01-17
  • Total pages :349
  • ISBN : 9780198570752
GET BOOK HERE

Summary : Models of magnetism have been pivotal in the understanding and advancement of science and technology. The book is the first one to cover the field as a whole, complementing a rich literature on specific models of magnetism. It is written in an easily accessible style, with a limited amount of mathematics, and covers a wide range of phenomena.

Ultrathin Magnetic Structures IV

Ultrathin Magnetic Structures IV
  • Author : Bretislav Heinrich,J.A.C. Bland
  • Publisher :Unknown
  • Release Date :2004-12-13
  • Total pages :258
  • ISBN : 3540219544
GET BOOK HERE

Summary : The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. Volume III describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. The present volume (IV) deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be accessible both to newcomers and to experts already working in this field who would like to get a better understanding of this very diversified area of research.

Ultrathin Magnetic Structures III

Ultrathin Magnetic Structures III
  • Author : J.A.C. Bland,Bretislav Heinrich
  • Publisher :Unknown
  • Release Date :2005-12-06
  • Total pages :318
  • ISBN : 3540271635
GET BOOK HERE

Summary : The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. This volume describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. Volume IV deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be accessible both to newcomers and to experts already working in this field who would like to get a better understanding of this very diversified area of research.

Magnetism

Magnetism
  • Author : Joachim Stöhr,Hans Christoph Siegmann
  • Publisher :Unknown
  • Release Date :2007-01-19
  • Total pages :822
  • ISBN : 9783540302834
GET BOOK HERE

Summary : This text book gives a comprehensive account of magnetism, one of the oldest yet most vibrant fields of physics. It spans the historical development, the physical foundations and the continuing research underlying the subject. The book covers both the classical and quantum mechanical aspects of magnetism and novel experimental techniques. Perhaps uniquely, it discusses spin transport and magnetization dynamics phenomena associated with atomically and spin engineered nano-structures against the backdrop of spintronics and magnetic storage and memory applications. The book is for students, and serves as a reference for scientists in academia and research laboratories.

Spin Wave Confinement

Spin Wave Confinement
  • Author : Sergej O. Demokritov
  • Publisher :Unknown
  • Release Date :2017-09-07
  • Total pages :436
  • ISBN : 9781351617215
GET BOOK HERE

Summary : Since the publication of the first edition of Spin-Wave Confinement, the magnetic community’s interest in dynamic excitations in magnetic systems of reduced dimensions has been increasing. Although the concept of spin waves and their quanta (magnons) as propagating excitation of magnetic media was introduced more than 80 years ago, this field has been repeatedly bringing us fascinating new physical phenomena. The successful development of magnonics as an emerging subfield of spintronics, which considers confined spin waves as a basis for smaller, faster, more robust, and more power-efficient electronic devices, inevitably demands reduction in the sizes and dimensions of the magnetic systems being studied. The unique features of magnons, including the possibility of carrying spin information over relatively long distances, the possibility of achieving submicrometer wavelength at microwave frequencies, and controllability by electronic signal via magnetic fields, make magnonic devices distinctively suited for implementation of novel integrated electronic schemes characterized by high speed, low power consumption, and extended functionalities. Edited by S. O. Demokritov, a prominent magnonics researcher who has successfully collected the results of cutting-edge research by almost all main players in the field, this book is for everyone involved in nanotechnology, spintronics, magnonics, and nanomagnetism.

Wide Bandgap Semiconductor Spintronics

Wide Bandgap Semiconductor Spintronics
  • Author : Vladimir Litvinov
  • Publisher :Unknown
  • Release Date :2016-03-30
  • Total pages :196
  • ISBN : 9789814669719
GET BOOK HERE

Summary : This book is focused on the spintronic properties of III–V nitride semiconductors. Particular attention is paid to the comparison between zinc blende GaAs- and wurtzite GaN-based structures, where the Rashba spin–orbit interaction plays a crucial role in voltage-controlled spin engineering. The book also deals with topological insulators, a new class of materials that could deliver sizable Rashba spin splitting in the surface electron spectrum. Electrically driven zero-magnetic-field spin splitting of surface electrons is discussed with respect to the specifics of electron-localized spin interaction and voltage-controlled ferromagnetism. The book covers generic topics in spintronics without entering into device specifics, since the overall goal of the enterprise is to provide theoretical background for most common concepts of spin-electron physics and give instructions to be used in solving problems of a general and specific nature. The book is intended for graduate students and may serve as an introductory course in this specific field of solid-state theory and applications.

Introduction to Magnetic Random-Access Memory

Introduction to Magnetic Random-Access Memory
  • Author : Bernard Dieny,Ronald B. Goldfarb,Kyung-Jin Lee
  • Publisher :Unknown
  • Release Date :2016-12-12
  • Total pages :264
  • ISBN : 9781119009740
GET BOOK HERE

Summary : Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durability. Although toggle-MRAM is currently a commercial product, it is clear that future developments in MRAM will be based on spin-transfer torque, which makes use of electrons’ spin angular momentum instead of their charge. MRAM will require an amalgamation of magnetics and microelectronics technologies. However, researchers and developers in magnetics and in microelectronics attend different technical conferences, publish in different journals, use different tools, and have different backgrounds in condensed-matter physics, electrical engineering, and materials science. This book is an introduction to MRAM for microelectronics engineers written by specialists in magnetic materials and devices. It presents the basic phenomena involved in MRAM, the materials and film stacks being used, the basic principles of the various types of MRAM (toggle and spin-transfer torque; magnetized in-plane or perpendicular-to-plane), the back-end magnetic technology, and recent developments toward logic-in-memory architectures. It helps bridge the cultural gap between the microelectronics and magnetics communities.