Download Nanostructured Anodic Metal Oxides Book PDF

Download full Nanostructured Anodic Metal Oxides books PDF, EPUB, Tuebl, Textbook, Mobi or read online Nanostructured Anodic Metal Oxides anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Nanostructured Anodic Metal Oxides

Nanostructured Anodic Metal Oxides
  • Author : Grzegorz D Sulka
  • Publisher :Unknown
  • Release Date :2020-03
  • Total pages :484
  • ISBN : 9780128167069
GET BOOK HERE

Summary : Nanostructured Anodic Metal Oxides: Synthesis and Applications reviews the current status of fabrication strategies that have been successfully developed to generate nanoporous, nanotubular and nanofibrous anodic oxides on a range of metals. The most recent achievements and innovative strategies for the synthesis of nanoporous aluminum oxide and nanotubular titanium oxide are discussed. However, a special emphasis is placed on the possibility of fabrication of nanostructured oxide layers with different morphologies on other metals, including aluminum titanium, tantalum, tin, zinc, zirconium and copper. In addition, emerging biomedical applications of synthesized materials are discussed in detail. During the past decade, great progress has been made both in the preparation and characterization of various nanomaterials and their functional applications. The anodization of metals has proven to be reliable for the synthesis of nanoporous, nanotubular and nanofibrous metal oxides to produce a desired diameter, density, aspect ratio (length to diameter) of pores/tubes, and internal pore/tube structure.

Nanostructured Anodic Metal Oxides

Nanostructured Anodic Metal Oxides
  • Author : Grzegorz D. Sulka
  • Publisher :Unknown
  • Release Date :2020-03-27
  • Total pages :484
  • ISBN : 9780128168776
GET BOOK HERE

Summary : Nanostructured Anodic Metal Oxides: Synthesis and Applications reviews the current status of fabrication strategies that have been successfully developed to generate nanoporous, nanotubular and nanofibrous anodic oxides on a range of metals. The most recent achievements and innovative strategies for the synthesis of nanoporous aluminum oxide and nanotubular titanium oxide are discussed. However, a special emphasis is placed on the possibility of fabrication of nanostructured oxide layers with different morphologies on other metals, including aluminum titanium, tantalum, tin, zinc, zirconium and copper. In addition, emerging biomedical applications of synthesized materials are discussed in detail. During the past decade, great progress has been made both in the preparation and characterization of various nanomaterials and their functional applications. The anodization of metals has proven to be reliable for the synthesis of nanoporous, nanotubular and nanofibrous metal oxides to produce a desired diameter, density, aspect ratio (length to diameter) of pores/tubes, and internal pore/tube structure. Provides an in-depth overview of anodization techniques for a range of metals Explores the emerging applications of anodic metal oxides Explains mechanisms of formation valve metal oxides via anodization

1-Dimensional Metal Oxide Nanostructures

1-Dimensional Metal Oxide Nanostructures
  • Author : Zainovia Lockman
  • Publisher :Unknown
  • Release Date :2018-12-07
  • Total pages :331
  • ISBN : 9781351266710
GET BOOK HERE

Summary : 1-D metal oxide nanostructures, especially those with semiconducting properties, have attracted much attention in recent years due to their potential and emerging applications, specifically in environment purification and energy devices. For these applications, there have been many efforts to grow 1-D nanostructures in the form of nanotubes, nanorods, and nanowires using processes that conserve energy, are cost effective, and can be scaled up for large-scale production. 1-Dimensional Metal Oxide Nanostructures gathers under one title the most recent development of oxide nanomaterials, especially those fabricated via oxidation process in the nanoscale field. Thermal and anodic oxidation processes are reviewed with an aim to offer an in-depth understanding of mechanisms of 1-D nanostructure formation, their characteristics, and limitations. Other more common methods are also discussed, including sol-gel, hydrothermal, and other templated methods. Important applications of 1-D nanostructures are then presented, focusing on oxides like zinc oxide, titanium oxide, zirconium oxide, copper oxide, and iron oxide. A chapter on carbon nanotubes hybrid with these oxides is also included as well as one on silicon oxide nanowires formation by local anodic oxidation process. Aimed at researchers, academics, and engineers working across the fields of nanotechnology, materials science, chemistry, physics, semiconductors, and environmental and biomedical engineering, this essential reference enables readers to grasp the main concepts of nanomaterials in 1-D: formation technique, characteristics, and uses. It also encourages practical innovations in nanotechnology, especially in curbing pressing global issues related to energy, environment, and security.

Porous Anodic Aluminum Oxide Scaffolds ; Formation Mechanisms and Applications

Porous Anodic Aluminum Oxide Scaffolds ; Formation Mechanisms and Applications
  • Author : Jihun Oh
  • Publisher :Unknown
  • Release Date :2010
  • Total pages :161
  • ISBN : OCLC:668428538
GET BOOK HERE

Summary : Nanoporous anodic aluminium oxide (AAO) can be created with pores that self-assemble into ordered configurations. Nanostructured metal oxides have proven to be very useful as scaffolds for growth of nanowires and nanotubes with tunable diameters and with tight diameter distributions. For 50 years, field-assisted dissolution of the oxide has been cited as the mechanism that leads to pore formation in alumina, and by analogy, porous anodic TiO2 and other functional metal oxides. We show that field-assisted dissolution models are consistent with the observed dependence of the Al2O3 dissolution rate on the electric field, as well as the existence of a critical field for pore initiation. However, we further show that the well-known ordered porous structure, which has a significantly different length scale, does not result from a field-induced instability, but is instead the result of a strain-induced instability with forced plastic deformation and flow of the oxide during further anodization. We demonstrate that these pore generation mechanisms can be controlled independently, even when they co-exist, by controlling the electric field across the oxide as well as the anodization conditions. We also show that mechanical confinement results in a dendritic pore structure. Through interpretation of these results we develop a generalized mechanism for ordered pore formation in AAO in analogy with cellular solidification. In addition, we report on abnormal behavior in anodic oxidation of Al in mechanically confined structures for formation of horizontal nanoporous anodic alumina oxide, H-AAO. Instead of smooth pore walls, periodic dendrite inner pore structures form, the growth rate is suppressed to 5 % of its value during bulk anodization under the same conditions, and a steady-state is never reached. These anomalies associated with formation of H-AAO originate from suppressed volume expansion and plastic flow of Al2O3 confined by the SiO2 hard mask. By determining new anodization conditions leading to zero volume expansion, dendritic H-AAO can be avoided and kinetic retardation can be minimized. A new method for perforation of the AAO barrier layer has been developed, based on anodization of Al/W bilayer films on substrates. When Al/W bilayer films are anodized and pores approach the Al/W interface, tungsten oxide forms and penetrates the alumina barrier oxide, in part, due to enhanced plasticity of the alumina layer. By selectively etching the tungsten oxide, the barrier oxide can be removed and the base of the pores opened, without etching of the AAO. Finally, we further refined the selective barrier perforation process using the W interlayer to develop a methodology for fabrication of through-pore AAO scaffolds on any conducting substrate (AS) by anodizing an Al/W/AS tri-layer. Structural and kinetic study of the WO3 extrusion revealed that the anodization of W consumes a fixed thickness of the W layer in acidic electrolytes under specific anodization conditions. Based on this study, the optimum thickness of the W interlayer in the Al/W/Au tri-layer was measured for various anodization conditions. Through-pore AAOs were fabricated on Au layers with exposure of the surface at the base of the pores, using the optimum W thickness without a violent O2 evolution reaction and without changing the pore diameters. With scaffolds made using this methodology, vertically-aligned free-standing Au and Pt nanowires with diameters ranging from about 12 nm to about 120 nm were grown by electrodeposition on a gold substrate.

Anodic Nanostructures for Solar Cell Applications

Anodic Nanostructures for Solar Cell Applications
  • Author : Jia Lin
  • Publisher :Unknown
  • Release Date :2016
  • Total pages :229
  • ISBN : OCLC:1154249919
GET BOOK HERE

Summary : As a versatile, straightforward, and cost-effective strategy for the synthesis of self-organized nanomaterials, electrochemical anodization is nowadays frequently used to synthesize anodic metal oxide nanostructures for various solar cell applications. This chapter mainly discusses the synthesis of various anodic TiO2 nanostructures on foils and as membranes or powders, and their potential use as the photoanode materials based on foils, transparent conductive oxide substrates, and flexible substrates in dye-sensitized solar cell applications, acting as dye-loading frames, light-harvesting enhancement assembly, and electron transport medium. Through the control and modulation of the electrical and chemical parameters of electrochemical anodization process, such as applied voltages, currents, bath temperatures, electrolyte composition, or post-treatments, anodic nanostructures with controllable structures and geometries and unique optical, electronic, and photoelectric properties in solar cell applications can be obtained. Compared with other types of nanostructures, there are several major advantages for anodic nanostructures to be used in solar cells. They are (1) optimized solar cell configuration to achieve efficient light utilization; (2) easy fabrication of large size nanostructures to enhance light scattering; (3) precise modulation of the electrochemical processes to realize periodic nanostructured geometry with excellent optical properties; (4) unidirectional electron transport pathways with suppressed charge recombination; and (5) large surface areas by modification of nanostructures. Due to the simple fabrication processes and unique properties, the anodic nanostructures will have a fascinating future to boost the solar cell performances.

Electroplating of Nanostructures

Electroplating of Nanostructures
  • Author : Mahmood Aliofkhazraei
  • Publisher :Unknown
  • Release Date :2015-12-02
  • Total pages :318
  • ISBN : 9789535122135
GET BOOK HERE

Summary : The electroplating was widely used to electrodeposit the nanostructures because of its relatively low deposition temperature, low cost and controlling the thickness of the coatings. With advances in electronics and microprocessor, the amount and form of the electrodeposition current applied can be controlled. The pulse electrodeposition has the interesting advantages such as higher current density application, higher efficiency and more variable parameters compared to direct current density. This book collects new developments about electroplating and its use in nanotechnology.

Heterogeneous Catalysts

Heterogeneous Catalysts
  • Author : Wey Yang Teoh,Atsushi Urakawa,Yun Hau Ng,Patrick Sit
  • Publisher :Unknown
  • Release Date :2021-03-22
  • Total pages :768
  • ISBN : 9783527344154
GET BOOK HERE

Summary : Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.

Semiconductors, Metal Oxides, and Composites: Metallization and Electrodeposition of Thin Films and Nanostructures

Semiconductors, Metal Oxides, and Composites: Metallization and Electrodeposition of Thin Films and Nanostructures
  • Author : G. Oskam
  • Publisher :Unknown
  • Release Date :2010-02
  • Total pages :222
  • ISBN : 9781566778008
GET BOOK HERE

Summary : This symposium provided a forum for current work on the electrodeposition and characterization of functional coatings and nanostructures. Central issues include the control of size and architecture and the ample choices and demands of substrate and deposited materials. The focus materials of this symposium were semiconductors, oxides and composites with e.g. ceramic nanoparticles or nanotubes.

Nanostructured Materials in Electrochemistry

Nanostructured Materials in Electrochemistry
  • Author : Ali Eftekhari
  • Publisher :Unknown
  • Release Date :2008-06-25
  • Total pages :489
  • ISBN : 9783527621514
GET BOOK HERE

Summary : Providing the unique and vital link between the worlds of electrochemistry and nanomaterials, this reference and handbook covers advances in electrochemistry through the nanoscale control of electrode structures, as well as advances in nanotechnology through electrochemical synthesis strategies. It demonstrates how electrochemical methods are of great scientific and commercial interest due to their low cost and high efficiency, and includes the synthesis of nanowires, nanoparticles, nanoporous and layered nanomaterials of various compositions, as well as their applications -- ranging from superior electrode materials to energy storage, biosensors, and electroanalytical devices.

Journal of the Electrochemical Society

Journal of the Electrochemical Society
  • Author : Anonim
  • Publisher :Unknown
  • Release Date :2009
  • Total pages :229
  • ISBN : UCSD:31822036942399
GET BOOK HERE

Summary :

Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications

Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications
  • Author : Po-Chun Chen
  • Publisher :Unknown
  • Release Date :2015
  • Total pages :229
  • ISBN : OCLC:903222853
GET BOOK HERE

Summary : This dissertation proposed to initiate the research into the fabrication of metal/oxide nanostructures by anodization process for biosensor, drug delivery and supercapacitor applications by producing different nanostructures which lead to the potential for various applications. This study focuses on the establishment of the knowledge and techniques necessary to perform metal/oxide nanostructures on biological and energy applications. This study will investigate: (1) the sensor and drug delivery applications of micro/nano structures; (2) novel processes to innovate anodic aluminum oxide nanotube template; (3) the supercapacitor applications of anodic titanium oxide. First, the extremely high surface area AAO coated microneedle and microneedle array can be developed as sensor and drug delivery devices. Due to the large surface area of the AAO, the film can absorb indicators to make it sensitive to testing targets. pH detection was demonstrated to show the sensing capability of the microneedle. Then, the microneedles were further built as an array by combining micromachining technique. The microneedle array provides a 3-D structure that possesses several hundred times more surface area and capacity than a traditional nanochannel template. Second, the nanoengineering process was conducted to innovate anodic aluminum oxide nanotube template. Guided anodization assisted by nanoimprint process formed AAO arrays that can be formed on controlled locations. More importantly, it shows the periodically ordered AAO array with different sizes of nanopores. With the improved AAO template, melting injection, electro/electroless deposition and sol-gel deposition were conducted to fabricate Ni nanowires/ TiO2 nanotubes, Ni/BaTiO3 core-shell nanotubes, and UHMWPE nanotubes. Third, various Ti-based alloys were anodized to form ordered nanotubes for supercapacitor application. Ti alloy oxide contains some porous layers which are not presented on TiO2 nanotube film. Thus, Ti alloys anodized oxide nanotubes have better supercapacitor behaviors than the conventional TiO2 nanotubes. However, a high surface area nanoporous Ti/TiO2 structure, which was fabricated by selective etching process, can accumulate large quantity of electrons and energy for supercapacitor needs. Additionally, nanoporous metals obtained by dealloying hold a unique combination of a highly conductive network and a bicontinuous open. The characteristics formed through dealloying also present a nice charge/discharge behavior and a good capacitance performance. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/152487

Advances in Memristor Neural Networks

Advances in Memristor Neural Networks
  • Author : Calin Ciufudean
  • Publisher :Unknown
  • Release Date :2018-10-03
  • Total pages :124
  • ISBN : 9781789841152
GET BOOK HERE

Summary : Nowadays, scientific research deals with alternative solutions for creating non-traditional computing systems, such as neural network architectures where the stochastic nature and live dynamics of memristive models play a key role. The features of memristors make it possible to direct processing and analysis of both biosystems and systems driven by artificial intelligence, as well as develop plausible physical models of spiking neural networks with self-organization. This book deals with advanced applications illustrating these concepts, and delivers an important contribution for the achievement of the next generation of intelligent hybrid biostructures. Different modeling and simulation tools can deliver an alternative to funding the theoretical approach as well as practical implementation of memristive systems.

Nanoporous Alumina

Nanoporous Alumina
  • Author : Dusan Losic,Abel Santos
  • Publisher :Unknown
  • Release Date :2015-07-17
  • Total pages :362
  • ISBN : 9783319203348
GET BOOK HERE

Summary : This book gives detailed information about the fabrication, properties and applications of nanoporous alumina. Nanoporous anodic alumina prepared by low-cost, simple and scalable electrochemical anodization process due to its unique structure and properties have attracted several thousand publications across many disciplines including nanotechnology, materials science, engineering, optics, electronics and medicine. The book incorporates several themes starting from the understanding fundamental principles of the formation nanopores and theoretical models of the pore growth. The book then focuses on describing soft and hard modification techniques for surface and structural modification of pore structures to tailor specific sensing, transport and optical properties of nano porous alumina required for diverse applications. These broad applications including optical biosensing, electrochemical DNA biosensing, molecular separation, optofluidics and drug delivery are reviewed in separated book chapters. The book appeals to researchers, industry professionals and high-level students.

Electrochemical Synthesis of Nanostructured Materials and Related Anodic Behaviors

Electrochemical Synthesis of Nanostructured Materials and Related Anodic Behaviors
  • Author : Mingliang Wang
  • Publisher :Unknown
  • Release Date :2011
  • Total pages :143
  • ISBN : OCLC:816406374
GET BOOK HERE

Summary : [Truncated abstract] This work studies the formation mechanisms of anodized materials and their related electrochemical anodic behaviors. Electrochemical anodization is a versatile method to create various materials with intricate nanostructured morphologies. These materials have potentials for various functional applications in chemical and biomedical sensing, photocatalysis, energy conversion in batteries and supercapacitors. The study is focused on three main aspects: experimental synthesis of anodized materials, theoretical analysis of formation mechanisms of anodized materials and fabrication metallic nanowires using anodized porous alumina. The following summarizes the highlights of the study. Firstly, different anodized structures are synthesized experimentally, including nano-channeled anodized alumina, nanoporous anodized tin oxide and anodized SnC2O4 particles. The related electrochemical behaviors of the metals during anodization are quantified and explained. Anodization current oscillations: The phenomenon of spontaneous periodical current oscillation during electrochemical anodization of tin in alkaline electrolytes is observed. Such phenomenon has been reported in the literature. Attempts have been made to explain this phenomenon on the basis of oxide film lift-off and electrolyte diffusion. This study demonstrates that the current oscillation is caused by oxygen generation and release on the tin anode, causing periodic redistribution of ion concentration in the electrolyte. The analysis also enables determination of the contributions of the two anodic reactions of tin oxidation and oxygen generation to the total anodic current. Secondly, a unified theory for the formation of surface structures of metals induced by anodization is proposed. The theory is based on thermodynamic and electrochemical principles. It is able to explain the main experimental observations of all three types of anodic structures, including solid compact oxide films, porous oxides and porous metal surface layers...

On Delveloping Novel Energy-related Nanostructured Matericals by Atomic Layer Depositon

On Delveloping Novel Energy-related Nanostructured Matericals by Atomic Layer Depositon
  • Author : Xiangbo Meng
  • Publisher :Unknown
  • Release Date :2011
  • Total pages :588
  • ISBN : OCLC:1067086480
GET BOOK HERE

Summary : This thesis presents the fabrication of a series of novel nanostructured materials using atomic layer deposition (ALD). In contrast to traditional methods including chemical vapor deposition (CVD), physical vapor deposition (PVD), and solution-based processes, ALD benefits the synthesis processes of nanostructures with many unrivalled advantages such as atomic-scale control, low temperature, excellent uniformity and conformality. Depending on the employed precursors, substrates, and temperatures, the ALD processes exhibited different characteristics. In particular, ALD has capabilities in fine-tuning compositions and structural phases. In return, the synthesis and the resultant nanostructured materials show many novelties This thesis covers ALD processes of four different metal oxides including iron oxide, tin oxide, titanium oxide, and lithium titanium oxide. Four different substrates were used in the aforementioned ALD processes, i.e., undoped carbon nanotubes (CNTs), nitrogen doped CNTs (N-CNTs), porous templates of anodic aluminum oxide (AAO), and graphene nanosheets (GNS). In practice, owing to their distinguished properties and structural characters, the substrates contributed to various novel nanostructures including nanotubes, coaxial core-shell nanotubes, and three-dimensional (3D) architectures. In addition, the surface chemistry of the substrates and their interactions with ALD precursors also were considered. The ALD process of iron oxide (ALD-Fe2O3) was the first one studied and it was fulfilled on both undoped CNTs and N-CNTs by using ferrocene and oxygen as precursors. It was found that N-CNTs are better than undoped CNTs for the ALD-Fe2O3, for they provide reactive sites directly due to their inherent properties. In contrast, undoped CNTs need pretreatment via covalent acid oxidation or non-covalent modification to create reactive sites before the ALD-Fe2O3 could proceed on their surface. This work resulted in different CNT-Fe2O3 core-shell structures with controlled growth of crystalline -Fe2O3 Another metal oxide, tin dioxide (SnO2) was performed using tin chloride (SnCl4) and water as ALD precursors. It was synthesized into different nanostructures based on NCNTs, AAO, and GNS. The work on N-CNTs disclosed that the ALD-SnO2 is favored by doped nitrogen atoms but the effects of different nitrogen-doping configurations vary with growth temperatures. In comparison, the ALD-SnO2 on AAO and GNS mainly relies on hydroxyl groups. A common finding from the studies is that growth temperatures influence the resultant SnO2, leading to amorphous, crystalline phase, or the mixtures of the aforementioned two. In addition, the cyclic nature of ALD contributes to controlled growth of SnO2. Based on the results from the ALD-SnO2 on AAO, it was concluded that the ALD-SnO2 experience three different growth modes with temperature, i.e., layer-by-layer, layer-by-particle, and evolutionary particles. The layers are in amorphous phase while the particles are in crystalline rutile phase. The aforementioned understandings on ALD-SnO2 led to pure SnO2 nanotubes based on AAO, CNT-SnO2 core-shell coaxial nanotubes, and GNS-based SnO2 3D architectures with controlled growth and structural phases. The third metal oxide, titanium dioxide (TiO2) was deposited using titanium isopropoxide (TTIP) and water as ALD precursors. It was found that the ALD-TiO2 is tunable from amorphous to crystalline anatase phase with temperature while the resultant deposition is controllable from nanoparticles to nanofilms as well. Based on different substrate, i.e., AAO, acid-pretreated CNTs, and GNS, TiO2 was fabricated with different nanostructures including nanotubes, core-shell coaxial nanotubes, and 3D architectures. In particular, the resultant nanostructures are distinguished with controlled phases and morphologies of TiO2. Different from the above binary metal oxides, the last metal oxide, lithium titanium oxide (Li4Ti5O12, LTO) is a ternary compound. The route for ALD-LTO is based on combining and tuning two sub-ALD systems. One sub-ALD system is for TiO2 using TTIP and water, and another sub-ALD system is for lithium-containing films using lithium tert-butoxide (LTB) and water as precursors. It was revealed that, through suitably matching the ratios of the two sub-ALD systems and annealing the resultant films, LTO is successfully synthesized on N-CNTs. However, this pioneering work shows a bit rutile TiO2 with LTO, and thus further effort is needed in future work.

Supercapacitor Design and Applications

Supercapacitor Design and Applications
  • Author : Zoran Stevic
  • Publisher :Unknown
  • Release Date :2016-11-02
  • Total pages :190
  • ISBN : 9789535127482
GET BOOK HERE

Summary : In this book, authors investigated asymmetric and symmetric supercapacitor configurations for different electrode materials. Besides the already standard activated carbon (AC), studies were done with other materials and technologies for their preparation and activation. Also, the research info was presented with different electrolytes in order to obtain a higher capacitance and potential window, with as small as possible serial resistance. Achieved high performance enables wide application, and some of the new applications (spacecraft power systems, powering heart pacemakers and wireless sensors) are also described in this book.

Aluminum Anodic Oxide AAO as a Template for Formation of Metal Nanostructures

Aluminum Anodic Oxide AAO as a Template for Formation of Metal Nanostructures
  • Author : Piotr Tomassi
  • Publisher :Unknown
  • Release Date :2015
  • Total pages :229
  • ISBN : OCLC:1154239558
GET BOOK HERE

Summary : The aim of the chapter is to describe the applications of AAO as a template in metal nanostructures formation and to present the experimental results obtained by authors in this field. The basic mechanism of the process of anodic oxidation of aluminum was described. The influence of oxidation parameters on the AAO structure was discussed. The processes of electrochemical metal deposition in AAO were described. The main present as well as future applications of metal nanostructures formed were listed.

Nanostructures

Nanostructures
  • Author : Osvaldo de Oliveira, Jr,Marystela Ferreira,Alessandra Luzia Da Róz,Fabio de Lima Leite
  • Publisher :Unknown
  • Release Date :2016-10-21
  • Total pages :272
  • ISBN : 9780323497831
GET BOOK HERE

Summary : Nanostructures covers the main concepts and fundamentals of nanoscience emphasizing characteristics and properties of numerous nanostructures. This book offers a clear explanation of nanostructured materials via several examples of synthesis/processing methodologies and materials characterization. In particular, this book is targeted to a range of scientific backgrounds, with some chapters written at an introductory level and others with the in-depth coverage required for a seasoned professional. Nanostructures is an important reference source for early-career researchers and practicing materials scientists and engineers seeking a focused overview of the science of nanostructures and nanostructured systems, and their industrial applications. Presents an accessible overview of the science behind, and industrial uses of, nanostructures. Gives materials scientists and engineers an understanding of how using nanostructures may increase material performance Targeted to a wide audience, including graduate and postgraduate study with a didactic approach to aid fluid learning Features an analysis of different nanostructured systems, explaining their properties and industrial applications

Electrochromic Materials and Devices

Electrochromic Materials and Devices
  • Author : Roger J. Mortimer,David R. Rosseinsky,Paul M. S. Monk
  • Publisher :Unknown
  • Release Date :2015-07-27
  • Total pages :672
  • ISBN : 9783527679881
GET BOOK HERE

Summary : Electrochromic materials can change their properties under the influence of an electrical voltage or current. Different classes of materials show this behavior such as transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the color change is persistent, the electric field needs only to be applied to initiate the switching, allowing for applications such as low-energy consumption displays, light-adapting mirrors in the automobile industry and smart windows for which the amount of transmitted light and heat can be controlled. The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, biomimicry, wearable displays and fashion. The last part rounds off the book by device case studies and environmental impact issues.

Metal Oxides in Supercapacitors

Metal Oxides in Supercapacitors
  • Author : Deepak P. Dubal,Pedro Gomez-Romero
  • Publisher :Unknown
  • Release Date :2017-07-10
  • Total pages :292
  • ISBN : 9780128104651
GET BOOK HERE

Summary : Metal Oxides in Supercapacitors addresses the fundamentals of metal oxide-based supercapacitors and provides an overview of recent advancements in this area. Metal oxides attract most of the materials scientists use due to their excellent physico-chemical properties and stability in electrochemical systems. This justification for the usage of metal oxides as electrode materials in supercapacitors is their potential to attain high capacitance at low cost. After providing the principles, the heart of the book discusses recent advances, including: binary metal oxides-based supercapacitors, nanotechnology, ternary metal oxides, polyoxometalates and hybrids. Moreover, the factors affecting the charge storage mechanism of metal oxides are explored in detail. The electrolytes, which are the soul of supercapacitors and a mostly ignored character of investigations, are also exposed in depth, as is the fabrication and design of supercapacitors and their merits and demerits. Lastly, the market status of supercapacitors and a discussion pointing out the future scope and directions of next generation metal oxides based supercapacitors is explored, making this a comprehensive book on the latest, cutting-edge research in the field. Explores the most recent advances made in metal oxides in supercapacitors Discusses cutting-edge nanotechnology for supercapacitors Includes fundamental properties of metal oxides in supercapacitors that can be used to guide and promote technology development Contains contributions from leading international scientists active in supercapacitor research and manufacturing

Electrodeposition of WO3 Nanoparticles for Sensing Applications

Electrodeposition of WO3 Nanoparticles for Sensing Applications
  • Author : L. Santos
  • Publisher :Unknown
  • Release Date :2015
  • Total pages :229
  • ISBN : OCLC:1154173887
GET BOOK HERE

Summary : The motivation of using metal oxides is mainly due to its charge storage capabilities, and electrocatalytic, electrochromic and photoelectrochemical properties. But comparing with bulk, nanostructured materials present several advantages related with the spatial confinement, large fraction of surface atoms, high surface energy, strong surface adsorption and increased surface to volume ratio, which greatly improves the performances of these materials. The deposition of this materials can be accomplished by a variety of physical and chemical techniques but nowadays, electrodeposited metal oxides are generally used in both laboratories and industries due to the flexibility to control structure and morphology of the oxide electrodes combined with a reduced cost. Tungsten oxide (WO3) is a well-studied semiconductor and is used for several applications as chromogenic material, sensor and catalyst. The major important features is its low cost and availability, improved stability, easy morphologic and structural control of the nanostructures, reversible change of conductivity, high sensitivity, selectivity and biocompatibility. For the electrodeposition of WO3, more than one method can be adopted: electrodeposition from a precursor solution, anodic oxidation, and electrodeposition of already produced nanoparticles; however, in this case the mechanism of the electrodeposition is not fully understood. In this chapter, a review of the latest published work of electrodeposited nanostructured metal oxides is provided to the reader, with a more detailed explanation of WO3 material applied in sensing devices.