**Download Plasticity Of Metallic Materials Book PDF**

Download full Plasticity Of Metallic Materials books PDF, EPUB, Tuebl, Textbook, Mobi or read online Plasticity Of Metallic Materials anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

## Plasticity of Metallic Materials

- Author : Oana Cazacu,Benoit Revil-Baudard
- Publisher :Unknown
- Release Date :2020-11-23
- Total pages :560
- ISBN : 9780128179857

**Summary :** Plasticity of Metallic Materials presents a rigorous framework for description of plasticity phenomena, classic and recent models for isotropic and anisotropic materials, new original analytical solutions to various elastic/plastic boundary value problems and new interpretations of mechanical data based on these recent models. The book covers models for metals with both cubic and hexagonal crystal structures, presents the mechanical tests required to determine the model parameters, various identification procedures, verification, and validation tests, and numerous applications to metal forming. Outlines latest research on plastic anisotropy and its role in metal forming Presents characterization and validation tests for metals with various crystal structures Compares the predictive capabilities of various models for a variety of loadings

## Cyclic Plasticity of Engineering Materials

- Author : Guozheng Kang,Qianhua Kan
- Publisher :Unknown
- Release Date :2017-05
- Total pages :552
- ISBN : 9781119180807

**Summary :** New contributions to the cyclic plasticity of engineering materials Written by leading experts in the field, this book provides an authoritative and comprehensive introduction to cyclic plasticity of metals, polymers, composites and shape memory alloys. Each chapter is devoted to fundamentals of cyclic plasticity or to one of the major classes of materials, thereby providing a wide coverage of the field. The book deals with experimental observations on metals, composites, polymers and shape memory alloys, and the corresponding cyclic plasticity models for metals, polymers, particle reinforced metal matrix composites and shape memory alloys. Also, the thermo-mechanical coupled cyclic plasticity models are discussed for metals and shape memory alloys. Key features: Provides a comprehensive introduction to cyclic plasticity Presents Macroscopic and microscopic observations on the ratchetting of different materials Establishes cyclic plasticity constitutive models for different materials. Analysis of cyclic plasticity in engineering structures. This book is an important reference for students, practicing engineers and researchers who study cyclic plasticity in the areas of mechanical, civil, nuclear, and aerospace engineering as well as materials science.

## Plasticity of Metals: Experiments, Models, Computation

- Author : Deutsche Forschungsgemeinschaft
- Publisher :Unknown
- Release Date :2001
- Total pages :398
- ISBN : UOM:39015055196573

**Summary :** This is the final report, drawing its conclusions and results from many individual papers and co-workers at the Institute for Structural Analysis of the Technical University of Braunschweig. It shows the correlation between energetic and mechanical quantities of face-centred cubic metals, cold worked and softened to different states. Constitutive models for the plastic of metals are developed and the application of these models is presented. The improvements achieved by this contribution cover the material functions, the shape of yield surfaces, and the consideration of distributed experimental data within the mumerical analysis.

## Fundamentals of Creep in Metals and Alloys

- Author : Michael E. Kassner,Maria-Teresa Perez-Prado
- Publisher :Unknown
- Release Date :2004-04-06
- Total pages :288
- ISBN : 0080532144

**Summary :** * Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion Understanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world’s leading investigators. · Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials · Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures · Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion

## Plasticity of Pressure-Sensitive Materials

- Author : Holm Altenbach,Andreas Öchsner
- Publisher :Unknown
- Release Date :2014-07-08
- Total pages :376
- ISBN : 9783642409455

**Summary :** Classical plasticity theory of metals is independent of the hydrostatic pressure. However if the metal contains voids or pores or if the structure is composed of cells, this classical assumption is no more valid and the influence of the hydrostatic pressure must be incorporated in the constitutive description. Looking at the microlevel, metal plasticity is connected with the uniform planes of atoms organized with long-range order. Planes may slip past each other along their close-packed directions. The result is a permanent change of shape within the crystal and plastic deformation. The presence of dislocations increases the likelihood of planes slipping. Nowadays, the theory of pressure sensitive plasticity is successfully applied to many other important classes of materials (polymers, concrete, bones etc.) even if the phenomena on the micro-level are different to classical plasticity of metals. The theoretical background of this phenomenological approach based on observations on the macro-level is described in detail in this monograph and applied to a wide range of different important materials in the last part of this book.

## Mechanical Properties of Complex Intermetallics

- Author : Esther Belin-Ferr
- Publisher :Unknown
- Release Date :2011
- Total pages :457
- ISBN : 9789814322164

**Summary :** This book will be the last one in a series of 4 books issued yearly as a deliverable of the research school established within the European Network of Excellence CMA (for Complex Metallic Alloys). It is written by reputed experts in the fields of metal physics, surface physics and chemistry, metallurgy and process engineering, combining expertise found inside as well as outside the network. The CMA network focuses on the huge group of largely unknown multinary alloys and compounds formed with crystal structures based on giant unit cells containing clusters, with many tens up to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties, which are mutually excluded in conventional materials: metallic electric conductivity combined with low thermal conductivity, combination of good light absorption with high-temperature stability, combination of high metallic hardness with reduced wetting by liquids, electrical and thermal resistance tuneable by composition variation, excellent resistance to corrosion, reduced cold-welding and adhesion, enhanced hydrogen storage capacity and light absorption, etc. The series of books will concentrate on: development of fundamental knowledge with the aim of understanding materials phenomena, technologies associated with the production, transformation and processing of knowledge-based multifunctional materials, surface engineering, support for new materials development and new knowledge-based higher performance materials for macro-scale applications.

## Formability of Metallic Materials

- Author : D. Banabic,H.J. Bunge,K. Pöhlandt,A.E. Tekkaya
- Publisher :Unknown
- Release Date :2013-04-17
- Total pages :334
- ISBN : 9783662040133

**Summary :** After a brief introduction into crystal plasticity,the fun- damentals of crystallographic textures and plastic anisotro- py, a main topic of this book, are outlined. A large chapter is devoted to formability testing both for bulk metal and sheet metal forming. For the first time testing methods for plastic anisotropy of round bars and tubes are included. A profound survey is given of literature about yield criteria for anisotropic materials up to most recent developments and the calculation of forming limits of anisotropic sheet me- tal. Other chapters are concerned with properties of workpieces after metal forming as well as the fundamentals of the theory of plasticity and finite element simulation of metal forming processes. The book is completed by a collection of tables of international standards for formability testing and of flow curves of metals which are most commonly used in metal forming. It is addressed both to university and industrial readers.

## Theory of Metal Forming Plasticity

- Author : Andrzej Sluzalec
- Publisher :Unknown
- Release Date :2013-04-17
- Total pages :278
- ISBN : 9783662104491

**Summary :** The intention of this book is to reveal and discuss some aspects of the metal fo- ing plasticity theory. The modern theory describes deformation of metallic bodies in cold and hot regimes under combined thermal and mechanical loadings. Th- mal and deformation fields appear in metal forming in various forms. A thermal field influences the material properties, modifies the extent of plastic zones, etc. and the deformation of metallic body induces changes in temperature distribution. The thermal effects in metal forming plasticity can be studied at two levels, - pending on whether uncoupled or coupled theories of thermo-plastic response have to be applied. A majority of metal forming processes can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the material constants and through the thermal dilatation. The description of thermo-plastic deformation in metal forming is c- ried out on the ground of thermodynamics.

## Plasticity-Damage Couplings: From Single Crystal to Polycrystalline Materials

- Author : Oana Cazacu,Benoit Revil-Baudard,Nitin Chandola
- Publisher :Unknown
- Release Date :2018-07-19
- Total pages :581
- ISBN : 9783319929224

**Summary :** Offering a well-balanced blend of theory and hands-on applications, this book presents a unified framework for the main dissipative phenomena in metallic materials: plasticity and damage. Based on representation theory for tensor functions and scale-bridging theorems, this framework enables the development of constitutive models that account for the influence of crystallographic structures and deformation mechanisms on the macroscopic behavior. It allows readers to develop a clear understanding of the range of applicability of any given model, as well as its capabilities and limitations, and provides procedures for parameter identification along with key concepts necessary to solve boundary value problems, making it useful to both researchers and engineering practitioners. Although the book focuses on new contributions to modeling anisotropic materials, the review of the foundations of plasticity and models for isotropic materials, completed with detailed mathematical proofs mean that it is self-consistent and accessible to graduate students in engineering mechanics and material sciences.

## Strength and Plasticity of Metals at Low Temperatures

- Author : Georgii Viktrovich Uzhik
- Publisher :Unknown
- Release Date :1961
- Total pages :229
- ISBN : CORNELL:31924004584300

**Summary :**

## Failure and Damage Analysis of Advanced Materials

- Author : Holm Altenbach,Tomasz Sadowski
- Publisher :Unknown
- Release Date :2014-12-01
- Total pages :278
- ISBN : 9783709118351

**Summary :** The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

## The Plasticity of Metals at the Sub-micrometer Scale and Dislocation Dynamics in a Thin Film

- Author : Seok Woo Lee
- Publisher :Unknown
- Release Date :2011
- Total pages :229
- ISBN : OCLC:747090880

**Summary :** Nanotechnology has played a significant role in the development of useful engineering devices and in the synthesis of new classes of materials. For the reliable design of devices and for structural applications of materials with micro- or nano-sized features, nanotechnology has always called for an understanding of the mechanical properties of materials at small length scales. Thus, it becomes important to develop new experimental techniques to allow reliable mechanical testing at small scales. At the same time, the development of computational techniques is necessary to interpret the experimentally observed phenomena. Currently, microcompression testing of micropillars, which are fabricated by focused-ion beam (FIB) milling, is one of the most popular experimental methods for measuring the mechanical properties at the micrometer scale. Also, dislocation dynamics codes have been extensively developed to study the local evolution of dislocation structures. Therefore, we conducted both experimental and theoretical studies that shed new light on the factors that control the strength and plasticity of crystalline materials at the sub-micrometer scale. In the experimental work, we produced gold nanopillars by focused-ion beam milling, and conducted microcompression tests to obtain the stress-strain curves. Firstly, the size effects on the strength of gold nanopillars were studied, and "Smaller is Stronger" was observed. Secondly, we tried to change the dislocation densities to control the strength of gold nanopillars by prestraining and annealing. The results showed that prestraining dramatically reduces the flow strength of nanopillars while annealing restores the strength to the pristine levels. Transmission electron microscopy (TEM) revealed that the high dislocation density (~1015 m-2) of prestrained nanopillars significantly decreased after heavy plastic deformation. In order to interpret this TEM observation, potential dislocation source structures were geometrically analyzed. We found that the insertion of jogged dislocations before relaxation or enabling cross-slip during plastic flow are prerequisites for the formation of potentially strong natural pinning points and single arm dislocation sources. At the sub-micron scale, these conditions are most likely absent, and we argue that mobile dislocation starvation would occur naturally in the course of plastic flow. Two more outstanding issues have also been studied in this dissertation. The first involves the effects of FIB milling on the mechanical properties. Since micropillars are made by FIB milling, the damage layer at the free surface is always formed and would be expected to affect the mechanical properties at a sub-micron scale. Thus, pristine gold microparticles were produced by a solid-state dewetting technique, and the effects of FIB milling on both pristine and prestrained microparticles were examined via microcompression testing. These experiments revealed that FIB milling significantly reduces the strength of pristine microparticles, but does not alter that of prestrained microparticles. Thus, we confirmed that if there are pre-existing mobile-dislocations present in the crystal, FIB milling does not affect the mechanical properties. The second issue is the scaling law commonly used to describe the strength of micropillars as a function of sample size. For the scaling law, the power-law approximation has been widely used without understanding fundamental physics in it. Thus, we tried to analyze the power-law approximation in a quantitative manner with the well-known single arm source model. Material parameters, such as the friction stress, the anisotropic shear modulus, the magnitude of Burgers vector and the dislocation density, were explored to understand their effects on the scaling behavior. Considering these effects allows one to rationalize the observed material-dependent power-law exponents quantitatively. In another part of the dissertation, a computational study of dislocation dynamics in a free-standing thin film is described. We improved the ParaDiS (Parallel Dislocation Simulator) code, which was originally developed at the Lawrence Livermore National Laboratory, to deal with the free surface of a free-standing thin film. The spectral method was implemented to calculate the image stress field in a thin film. The faster convergence in the image stress calculation were obtained by employing Yoffe's image stress, which removes the singularity of the traction at the intersecting point between a threading dislocation and free surface. Using this newly developed code, we studied the stability of dislocation junctions and jogs, which are the potential dislocation sources, in a free standing thin film of a face-centered-cubic metal and discussed the creation of a dislocation source in a thin film. In summary, we have performed both microcompression tests and dislocation dynamics simulations to understand the dislocation mechanisms at the sub-micron scale and the related mechanical properties of metals. We believe that these experimental and computational studies have contributed to the enhancement of our fundamental knowledge of the plasticity of metals at the sub-micron scale.

## Fundamentals of Creep in Metals and Alloys

- Author : Michael E. Kassner
- Publisher :Unknown
- Release Date :2008-11-27
- Total pages :295
- ISBN : 9780080914992

**Summary :** Creep refers to the slow, permanent deformation of materials under external loads, or stresses. It explains the creep strength or resistance to this extension. This book is for experts in the field of strength of metals, alloys and ceramics. It explains creep behavior at the atomic or “dislocation defect level. This book has many illustrations and many references. The figure formats are uniform and consistently labeled for increased readability. This book is the second edition that updates and improves the earlier edition. Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials Transmission electron micrographs provide direct insight into the basic microstructure of metals deforming at high temperatures Extensive literature review of about 1000 references provides an excellent overview of the field

## Plasticity and Creep of Metals

- Author : Andrew Rusinko,Konstantin Rusinko
- Publisher :Unknown
- Release Date :2011-07-24
- Total pages :434
- ISBN : 9783642212130

**Summary :** This book serves both as a textbook and a scientific work. As a textbook, the work gives a clear, thorough and systematic presentation of the fundamental postulates, theorems and principles and their applications of the classical mathematical theories of plasticity and creep. In addition to the mathematical theories, the physical theory of plasticity, the book presents the Budiansky concept of slip and its modification by M. Leonov. Special attention is given to the analysis of the advantages and shortcomings of the classical theories. In its main part, the book presents the synthetic theory of irreversible deformations, which is based on the mathematical Sanders flow plasticity theory and the physical theory, the Budiansky concept of slip. The main peculiarity of the synthetic theory is that the formulae for both plastic and creep deformation, as well their interrelations, can be derived from the single constitutive equation. Furthermore, the synthetic theory, as physical one, can take into account the real processes that take place in solids at irreversible deformation. This widens considerably the potential of the synthetic theory. In the framework of the synthetic theory such problems as creep delay, the Hazen-Kelly effect, the deformation at the break of the load trajectory, the influence of the rate of loading on the stress-strain diagram, creep at the changes of load, creep at unloading and reversed creep, have been analytically described. In the last chapter, the book shows the solution of some contemporary problems of plasticity and creep: Creep deformation at cyclic abrupt changes of temperature, The influence of irradiation on the plastic and creep deformation, Peculiarities of deformation at the phase transformation of some metals.

## Thermo-Mechanical Processing of Metallic Materials

- Author : Bert Verlinden,Julian Driver,Indradev Samajdar,Roger D. Doherty
- Publisher :Unknown
- Release Date :2007-06-07
- Total pages :560
- ISBN : 0080544487

**Summary :** Thermo-Mechanical Processing of Metallic Materials describes the science and technology behind modern thermo-mechanical processing (TMP), including detailed descriptions of successful examples of its application in the industry. This graduate-level introductory resource aims to fill the gap between two scientific approaches and illustrate their successful linkage by the use of suitable modern case studies. The book is divided into three key sections focusing on the basics of metallic materials processing. The first section covers the microstructural science base of the subject, including the microstructure determined mechanical properties of metals. The second section deals with the current mechanical technology of plastic forming of metals. The concluding section demonstrates the interaction of the first two disciplines in a series of case studies of successful current TMP processing and looks ahead to possible new developments in the field. This text is designed for use by graduate students coming into the field, for a graduate course textbook, and for Materials and Mechanical Engineers working in this area in the industry. * Covers both physical metallurgy and metals processing * Links basic science to real everyday applications * Written by four internationally-known experts in the field

## Engineering Plasticity

- Author : Z. R. Wang
- Publisher :Unknown
- Release Date :2018
- Total pages :520
- ISBN : 9781119237303

**Summary :** An all-in-one guide to the theory and applications of plasticity in metal forming, featuring examples from the automobile and aerospace industries Provides a solid grounding in plasticity fundamentals and material properties Features models, theorems and analysis of processes and relationships related to plasticity, supported by extensive experimental data Offers a detailed discussion of recent advances and applications in metal forming

## Size Effects in Plasticity

- Author : George Voyiadjis,Mohammadreza Yaghoobi
- Publisher :Unknown
- Release Date :2019-08-01
- Total pages :408
- ISBN : 9780128135136

**Summary :** Size Effects in Plasticity: From Macro to Nano provides concise explanations of all available methods in this area, from atomistic simulation, to non-local continuum models to capture size effects. It then compares their applicability to a wide range of research scenarios. This essential guide addresses basic principles, numerical issues and computation, applications and provides code which readers can use in their own modeling projects. Researchers in the fields of computational mechanics, materials science and engineering will find this to be an ideal resource when they address the size effects observed in deformation mechanisms and strengths of various materials. Provides a comprehensive reference on the field of size effects and a review of mechanics of materials research in all scales Explains all major methods of size effects simulation, including non-local continuum models, non-local crystal plasticity, discrete dislocation methods and molecular dynamics Includes source codes that readers can use in their own projects

## Basic Engineering Plasticity

- Author : David Rees
- Publisher :Unknown
- Release Date :2012-12-02
- Total pages :528
- ISBN : 9780080470900

**Summary :** Plasticity is concerned with understanding the behavior of metals and alloys when loaded beyond the elastic limit, whether as a result of being shaped or as they are employed for load bearing structures. Basic Engineering Plasticity delivers a comprehensive and accessible introduction to the theories of plasticity. It draws upon numerical techniques and theoretical developments to support detailed examples of the application of plasticity theory. This blend of topics and supporting textbook features ensure that this introduction to the science of plasticity will be valuable for a wide range of mechanical and manufacturing engineering students and professionals. Brings together the elements of the mechanics of plasticity most pertinent to engineers, at both the micro- and macro-levels Covers the theory and application of topics such as Limit Analysis, Slip Line Field theory, Crystal Plasticity, Sheet and Bulk Metal Forming, as well as the use of Finite Element Analysis Clear and well-organized with extensive worked engineering application examples, and end of chapter exercises

## Metal Plasticity and Fatigue at High Temperature

- Author : Denis Benasciutti,Luciano Moro,Jelena Srnec Novak
- Publisher :Unknown
- Release Date :2020-05-20
- Total pages :220
- ISBN : 9783039287703

**Summary :** In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.

## Introduction to Engineering Materials

- Author : Vernon John
- Publisher :Unknown
- Release Date :1992-03-31
- Total pages :519
- ISBN : 9781349219766

**Summary :** A text which deals with the basic principles of materials science and technology in a simple, yet thorough manner. This edition includes more worked examples and more detailed information on certain aspects of materials science. An ELBS/LPBB edition is available.

## Inelastic Deformation of Metals

- Author : Donald C. Stouffer,L. Thomas Dame
- Publisher :Unknown
- Release Date :1996-01-05
- Total pages :520
- ISBN : 0471021431

**Summary :** Using a totally new approach, this groundbreaking book establishesthe logical connections between metallurgy, materials modeling, andnumerical applications. In recognition of the fact that classicalmethods are inadequate when time effects are present, or whencertain types of multiaxial loads are applied, the new, physicallybased state variable method has evolved to meet these needs.Inelastic Deformation of Metals is the first comprehensivepresentation of this new technology in book form. It developsphysically based, numerically efficient, and accurate methods forpredicting the inelastic response of metals under a variety ofloading and environmental conditions. More specifically, Inelastic Deformation of Metals: * Demonstrates how to use the metallurgical information to developmaterial models for structural simulations and low cyclic fatiguepredictions. It presents the key features of classical and statevariable modeling, describes the different types of models andtheir attributes, and provides methods for developing models forspecial situations. This book's innovative approach covers such newtopics as multiaxial loading, thermomechanical loading, and singlecrystal superalloys. * Provides comparisons between data and theory to help the readermake meaningful judgments about the value and accuracy of aparticular model and to instill an understanding of how metalsrespond in real service environments. * Analyzes the numerical methods associated with nonlinearconstitutive modeling, including time independent, time dependentnumerical procedures, time integration schemes, inversiontechniques, and sub-incrementing. Inelastic Deformation of Metals is designed to give theprofessional engineer and advanced student new and expandedknowledge of metals and modeling that will lead to more accuratejudgments and more efficient designs. In contrast to existing plasticity books, which discuss few if anycorrelations between data and models, this breakthrough volumeshows engineers and advanced students how materials and modelsactually do behave in real service environments. As greater demandsare placed on technology, the need for more meaningful judgmentsand more efficient designs increases dramatically. Incorporatingthe state variable approach, Inelastic Deformation of Metals: * Provides an overview of a wide variety of metal responsecharacteristics for rate dependent and rate independent loadingconditions * Shows the correlations between the mechanical response propertiesand the deformation mechanisms, and describes how to use thisinformation in constitutive modeling * Presents different modeling options and discusses the usefulnessand limitations of each modeling approach, with material parametersfor each model * Offers numerous examples of material response and correlationwith model predictions for many alloys * Shows how to implement nonlinear material models in stand-aloneconstitutive model codes and finite element codes An innovative, comprehensive, and essential book, InelasticDeformation of Metals will help practicing engineers and advancedstudents in mechanical, aerospace, civil, and metallurgicalengineering increase their professional skills in the moderntechnological environment.