Download Power Electronics And Renewable Energy Systems Book PDF

Download full Power Electronics And Renewable Energy Systems books PDF, EPUB, Tuebl, Textbook, Mobi or read online Power Electronics And Renewable Energy Systems anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Power Electronics and Renewable Energy Systems

Power Electronics and Renewable Energy Systems
  • Author : C. Kamalakannan,L. Padma Suresh,Subhransu Sekhar Dash,Bijaya Ketan Panigrahi
  • Publisher :Unknown
  • Release Date :2014-11-19
  • Total pages :1607
  • ISBN : 9788132221197
GET BOOK HERE

Summary : The book is a collection of high-quality peer-reviewed research papers presented in the Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

Power Electronics in Renewable Energy Systems and Smart Grid

Power Electronics in Renewable Energy Systems and Smart Grid
  • Author : Bimal K. Bose
  • Publisher :Unknown
  • Release Date :2019-07-30
  • Total pages :720
  • ISBN : 9781119515623
GET BOOK HERE

Summary : This book is an advanced approach to power electronics specifically in terms of renewable energy systems and smart grid. The fourteen chapters are updated and extended versions of the invited papers in the Proc. IEEE special issue of November 2017, contributed by a group of invited authors who are international authorities in their field. The application-oriented chapters are tutorial oriented, with technology status review. The book also includes examples of applications and discussions of future perspectives.

Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications

Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications
  • Author : Haitham Abu-Rub,Mariusz Malinowski,Kamal Al-Haddad
  • Publisher :Unknown
  • Release Date :2014-06-02
  • Total pages :832
  • ISBN : 9781118755501
GET BOOK HERE

Summary : Compiles current research into the analysis and design ofpower electronic converters for industrial applications andrenewable energy systems, presenting modern and future applicationsof power electronics systems in the field of electricalvehicles With emphasis on the importance and long-term viability of PowerElectronics for Renewable Energy this book brings together thestate of the art knowledge and cutting-edge techniques in variousstages of research. The topics included are not currentlyavailable for practicing professionals and aim to enable the readerto directly apply the knowledge gained to their designs. The bookaddresses the practical issues of current and future electric andplug-in hybrid electric vehicles (PHEVs), and focuses primarily onpower electronics and motor drives based solutions for electricvehicle (EV) technologies. Propulsion system requirements and motorsizing for EVs is discussed, along with practical system sizingexamples. Key EV battery technologies are explained as well ascorresponding battery management issues. PHEV power systemarchitectures and advanced power electronics intensive charginginfrastructures for EVs and PHEVs are detailed. EV/PHEV interfacewith renewable energy is described, with practical examples. Thisbook explores new topics for further research needed world-wide,and defines existing challenges, concerns, and selected problemsthat comply with international trends, standards, and programs forelectric power conversion, distribution, and sustainable energydevelopment. It will lead to the advancement of the currentstate-of-the art applications of power electronics for renewableenergy, transportation, and industrial applications and will helpadd experience in the various industries and academia about theenergy conversion technology and distributed energysources. Combines state of the art global expertise to present thelatest research on power electronics and its application intransportation, renewable energy and different industrialapplications Offers an overview of existing technology and future trends,with discussion and analysis of different types of converters andcontrol techniques (power converters, high performance powerdevices, power system, high performance control system and novelapplications) Systematic explanation to provide researchers with enoughbackground and understanding to go deeper in the topics covered inthe book

Power Electronics in Renewable Energy Systems

Power Electronics in Renewable Energy Systems
  • Author : Teuvo Suntio,Tuomas Messo
  • Publisher :Unknown
  • Release Date :2019-06-24
  • Total pages :604
  • ISBN : 9783039210442
GET BOOK HERE

Summary : This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.

Power Electronics for Renewable and Distributed Energy Systems

Power Electronics for Renewable and Distributed Energy Systems
  • Author : Sudipta Chakraborty,Marcelo G. Simões,William E. Kramer
  • Publisher :Unknown
  • Release Date :2013-06-12
  • Total pages :609
  • ISBN : 9781447151043
GET BOOK HERE

Summary : While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage systems such as battery and fast response storage systems are discussed along with application-specific examples. After setting forth the fundamentals, the chapters focus on more complex topics such as modular power electronics, microgrids and smart grids for integrating renewable and distributed energy. Emerging topics such as advanced electric vehicles and distributed control paradigm for power system control are discussed in the last two chapters. With contributions from subject matter experts, the diagrams and detailed examples provided in each chapter make Power Electronics for Renewable and Distributed Energy Systems a sourcebook for electrical engineers and consultants working to deploy various renewable and distributed energy systems and can serve as a comprehensive guide for the upper-level undergraduates and graduate students across the globe.

Alternative Energy in Power Electronics

Alternative Energy in Power Electronics
  • Author : Muhammad H. Rashid
  • Publisher :Unknown
  • Release Date :2014-10-28
  • Total pages :378
  • ISBN : 9780124095342
GET BOOK HERE

Summary : This new resource is a practical overview of designing, testing and troubleshooting power electronics in alternative energy systems, providing you with the most important information on how power electronics components such as inverters, controllers and batteries can play a pivotal role in the successful implementation of green energy solutions for both stand-alone and grid-connected applications. You will learn how to choose the right components for diverse systems, from utility-scale wind farms to photovoltaic panels on single residences, how to get the most out of existing systems, and how to solve the tough challenges particular to alternative energy applications. Whether you are a renewables professional who needs to understand more about how power electronics impact energy output, or a power engineer who is interested in learning what new avenues the alternative energy revolution is opening for your work, start here with advice and explanations from the experts, including equations, diagrams and tables designed to help you understand and succeed. Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells

Electric Renewable Energy Systems

Electric Renewable Energy Systems
  • Author : Muhammad H. Rashid
  • Publisher :Unknown
  • Release Date :2015-11-25
  • Total pages :450
  • ISBN : 9780128006368
GET BOOK HERE

Summary : This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells

Electricity and Electronics for Renewable Energy Technology

Electricity and Electronics for Renewable Energy Technology
  • Author : Ahmad Hemami
  • Publisher :Unknown
  • Release Date :2017-09-29
  • Total pages :802
  • ISBN : 9781482261783
GET BOOK HERE

Summary : Electricity and Electronics for Renewable Energy Technology: An Introduction provides a foundational understanding of electricity and the methods and devices specific to electricity from renewable sources. The book begins with a brief explanation of the necessary mathematics and then: Addresses the basics of electricity and relationships, motors and generators, transformers, and networks and distribution Tackles the key concepts associated with electronics, diodes and transistors, switching devices, and power converters Covers digital electronics from number systems and logic circuits to encoders and decoders Explores advanced subjects such as reactive power and the operation of a transistor A lab manual and PowerPoint presentation are available with qualifying course adoption. Featuring extensive review questions and practice problems at the end of each chapter, Electricity and Electronics for Renewable Energy Technology: An Introduction instills an essential knowledge of electricity and electronics required for work with renewable energy.

Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems

Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems
  • Author : Alhussein Albarbar,Canras Batunlu
  • Publisher :Unknown
  • Release Date :2017-07-19
  • Total pages :218
  • ISBN : 9783319598284
GET BOOK HERE

Summary : This book analyzes the thermal characteristics of power electronic devices (PEDs) with a focus on those used in wind and solar energy systems. The authors focus on the devices used in such applications, for example boost converters and inverters under different operating conditions. The book explains in detail finite element modeling techniques, setting up measuring systems, data analysis, and PEDs’ lifetime calculations. It is appropriate reading for graduate students and researchers who focus on the design and reliability of power electronic devices.

Design of Smart Power Grid Renewable Energy Systems

Design of Smart Power Grid Renewable Energy Systems
  • Author : Ali Keyhani
  • Publisher :Unknown
  • Release Date :2011-06-24
  • Total pages :592
  • ISBN : 1118005821
GET BOOK HERE

Summary : To address the modeling and control of smart grid renewable energy system into electric power systems, this book integrates three areas of electrical engineering: power system engineering, control systems engineering and power electronics The approach to the integration of these three areas differs from classical methods. Due to complexity of this task, the author has decided to present the basic concepts, and then present a simulation test bed in matlab to use these concepts to solve a basic problem in development of smart grid energy system. Therefore, each chapter has three parts: first a problem of integration is stated and its importance is described. Then, the mathematical model of the same problem is formulated. Next, the solution steps are outlined. This step is followed by developing a matlab simulation test bed. Each chapter ends with a set of problems and projects. The book is intended be used as textbook for instruction or by researchers. This book can be used as undergraduate text for both electrical and mechanical engineers. The prerequisite for the course is a course in fundamental of electrical engineering.

Renewable Energy Systems

Renewable Energy Systems
  • Author : Fang Lin Luo,Ye Hong
  • Publisher :Unknown
  • Release Date :2017-12-19
  • Total pages :880
  • ISBN : 9781439891100
GET BOOK HERE

Summary : Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems—including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduces more than 200 topologies of advanced converters originally developed by the authors, including 150 updated circuits on modern conversion technologies. It also discusses recently published topologies and thoroughly analyzes new converter circuits. Novel approaches include split-capacitor and split-inductor techniques that can be applied in super-lift and other converters. Resolve Historic Problems in Conversion Technologies Along with offering many cutting-edge techniques, the authors resolve some historic problems, such as the accurate determination of the conduction angle of single-phase rectifiers and power factor correction. They also describe a new series—laddered multilevel inverters—that uses few devices to produce more levels, overcoming the drawbacks of the pulse-width-modulation (PWM) inverter and providing great scope for industrial applications. Tap the Knowledge of Pioneers in the Field This book is written by pioneers in advanced conversion technology who have created a large number of converters, including the world-renowned DC/DC Luo-converters and super-lift Luo-converters. Featuring numerous examples and diagrams, it guides readers in designing advanced converters for use in renewable energy systems.

Power Conversion of Renewable Energy Systems

Power Conversion of Renewable Energy Systems
  • Author : Ewald F. Fuchs,Mohammad A.S. Masoum
  • Publisher :Unknown
  • Release Date :2011-03-31
  • Total pages :692
  • ISBN : 1441979794
GET BOOK HERE

Summary : Power Conversion of Renewable Energy Systems presents an introduction to conventional energy conversion components and systems, as well as those related to renewable energy. This volume introduces systems first, and then in subsequent chapters describes the components of energy systems in detail. Readers will find examples of renewable and conventional energy and power systems, including energy conversion, variable-speed drives and power electronics, in addition to magnetic devices such as transformers and rotating machines. Applications of PSpice, MATLAB, and Mathematica are also included, along with solutions to over 100 application examples. Power Conversion of Renewable Energy Systems aims to instruct readers how to actively apply the theories discussed within. It would be an ideal volume for researchers, students and engineers working with energy systems and renewable energy.

Modeling Power Electronics and Interfacing Energy Conversion Systems

Modeling Power Electronics and Interfacing Energy Conversion Systems
  • Author : M. Godoy Simoes,Felix A. Farret
  • Publisher :Unknown
  • Release Date :2016-09-16
  • Total pages :352
  • ISBN : 9781119058472
GET BOOK HERE

Summary : Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: [email protected]oups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.

Renewable Energy Systems

Renewable Energy Systems
  • Author : Viktor Perelmuter
  • Publisher :Unknown
  • Release Date :2016-12-01
  • Total pages :389
  • ISBN : 9781315316222
GET BOOK HERE

Summary : The development of renewable sources for electrical energy has become a mainstream focus in the field of electrical engineering. This book can be used by both engineers and researchers working to develop new electrical systems and investigate existing ones. Additionally, it can serve as a guide for undergraduate and graduate students during their study of electrical fields. The electrical devices that are used in renewable sources have complicated inner structures, and methods of computer simulation make the development of these systems easier and faster. Simulink, and its toolbox SimPowerSystems, is the most popular means for simulation of electrical systems. The topic of wind-generator (WG) systems simulation merits detailed consideration; therefore, this text covers an in-depth exploration of the simulation of WG systems, systems with batteries, photovoltaic systems, fuel elements, microturbines, and hydroelectric systems.

Hybrid-Renewable Energy Systems in Microgrids

Hybrid-Renewable Energy Systems in Microgrids
  • Author : Hina Fathima,Prabaharan N,Palanisamy K,Akhtar Kalam,Saad Mekhilef,Jackson J. Justo
  • Publisher :Unknown
  • Release Date :2018-06-02
  • Total pages :268
  • ISBN : 9780081024942
GET BOOK HERE

Summary : Hybrid-Renewable Energy Systems in Microgrids: Integration, Developments and Control presents the most up-to-date research and developments on hybrid-renewable energy systems (HRES) in a single, comprehensive resource. With an enriched collection of topics pertaining to the control and management of hybrid renewable systems, this book presents recent innovations that are molding the future of power systems and their developing infrastructure. Topics of note include distinct integration solutions and control techniques being implemented into HRES that are illustrated through the analysis of various global case studies. With a focus on devices and methods to integrate different renewables, this book provides those researching and working in renewable energy solutions and power electronics with a firm understanding of the technologies available, converter and multi-level inverter considerations, and control and operation strategies. Includes significant case studies of control techniques and integration solutions which provide a deeper level of understanding and knowledge Combines existing research into a single informative resource on micro grids with HRES integration and control Includes architectural considerations and various control strategies for the operation of hybrid systems

Power Electronics for Photovoltaic Power Systems

Power Electronics for Photovoltaic Power Systems
  • Author : Mahinda Vilathgamuwa,Dulika Nayanasiri,Shantha Gamini
  • Publisher :Unknown
  • Release Date :2015-08-01
  • Total pages :131
  • ISBN : 9781627057769
GET BOOK HERE

Summary : The world energy demand has been increasing in a rapid manner with the increase of population and rising standard of living. The world population has nearly doubled in the last 40 years from 3.7 billion people to the present 7 billion people. It is anticipated that world population will grow towards 8 billion around 2030. Furthermore, the conventional fossil fuel supplies become unsustainable as the energy demand in emerging big economies such as China and India would rise tremendously where the China will increase its energy demand by 75% and India by 100% in the next 25 years. With dwindling natural resources, many countries throughout the world have increasingly invested in renewable resources such as photovoltaics (PV) and wind. The world has seen immense growth in global photovoltaic power generation over the last few decades. For example, in Australia, renewable resources represented nearly 15% of total power generation in 2013. Among renewable resources, solar and wind account for 38% of generation. In near future, energy in the domestic and industrial sector will become ""ubiquitous"" where consumers would have multiple sources to get their energy. Another such prediction is that co-location of solar and electrical storage will see a rapid growth in global domestic and industrial sectors; conventional power companies, which dominate the electricity market, will face increasing challenges in maintaining their incumbent business models. The efficiency, reliability and cost-effectiveness of the power converters used to interface PV panels to the mains grid and other types of off-grid loads are of major concern in the process of system design. This book describes state-of-the-art power electronic converter topologies used in various PV power conversion schemes. This book aims to provide a reader with a wide variety of topologies applied in different circumstances so that the reader would be able to make an educated choice for a given application.

Renewable Energy Devices and Systems with Simulations in MATLAB® and ANSYS®

Renewable Energy Devices and Systems with Simulations in MATLAB® and ANSYS®
  • Author : Frede Blaabjerg,Dan M. Ionel
  • Publisher :Unknown
  • Release Date :2017-05-18
  • Total pages :402
  • ISBN : 9781315350349
GET BOOK HERE

Summary : Due to the increasing world population, energy consumption is steadily climbing, and there is a demand to provide solutions for sustainable and renewable energy production, such as wind turbines and photovoltaics. Power electronics are being used to interface renewable sources in order to maximize the energy yield, as well as smoothly integrate them within the grid. In many cases, power electronics are able to ensure a large amount of energy saving in pumps, compressors, and ventilation systems. This book explains the operations behind different renewable generation technologies in order to better prepare the reader for practical applications. Multiple chapters are included on the state-of-the-art and possible technology developments within the next 15 years. The book provides a comprehensive overview of the current renewable energy technology in terms of system configuration, power circuit usage, and control. It contains two design examples for small wind turbine system and PV power system, respectively, which are useful for real-life installation, as well as many computer simulation models.

Operation and Control of Renewable Energy Systems

Operation and Control of Renewable Energy Systems
  • Author : Mukhtar Ahmad
  • Publisher :Unknown
  • Release Date :2017-12-18
  • Total pages :384
  • ISBN : 9781119281689
GET BOOK HERE

Summary : A comprehensive reference to renewable energy technologies with a focus on power generation and integration into power systems This book addresses the generation of energy (primarily electrical) through various renewable sources. It discusses solar and wind power—two major resources that are now in use in small as well as large-scale power production—and their requirements for effectively using advanced control techniques.In addition, the book looks at theintegration of renewable energy in the power grid and its ability to work in a micro grid. Operation and Control of Renewable Energy Systems describes the numerous types of renewable energy sources available and the basic principles involving energy conversion, including the theory of fluid mechanics and the laws of thermodynamics. Chapter coverage includes the theory of power electronics and various electric power generators, grid scale energy storage systems, photovoltaic power generation, solar thermal energy conversion technology, horizontal and vertical wind turbines for power generation, and more. Covers integration into power systems with an emphasis on microgrids Introduces a wide range of subjects related to renewable energy systems, including energy storage, microgrids, and battery technologies Includes tutorial materials such as up-to-date references for wind energy, grid connection, and power electronics—plus worked examples and solutions Operation and Control of Renewable Energy Systems is the perfect introduction to renewable energy technologies for undergraduate and graduate students and can also be very useful to practicing engineers.

Power Electronic Converters for Solar Photovoltaic Systems

Power Electronic Converters for Solar Photovoltaic Systems
  • Author : Ashok L. Kumar,S.Albert Alexander,Madhuvanthani Rajendran
  • Publisher :Unknown
  • Release Date :2020-11-20
  • Total pages :404
  • ISBN : 9780128227503
GET BOOK HERE

Summary : Power Electronic Converters for Solar Photovoltaic Systems provides design and implementation procedures for power electronic converters and advanced controllers to improve standalone and grid environment solar photovoltaics performance. Sections cover performance and improvement of solar photovoltaics under various conditions with the aid of intelligent controllers, allowing readers to better understand the nuances of power electronic converters for renewable energy systems. With algorithm development and real-time implementation procedures, this reference is useful for those interested in power electronics for performance improvement in distributed energy resources, design of advanced controllers, and measurement of critical parameters surrounding renewable energy systems. By providing a complete solution for performance improvement in solar PV with novel control techniques, this book will appeal to researchers and engineers working in power electronic converters, renewable energy, and power quality. Includes simulation studies and photovoltaic performance analysis Uses case studies as a reference for design and research Covers different varieties of power converters, from fundamentals to implementation

Electric Powertrain

Electric Powertrain
  • Author : John G. Hayes,G. Abas Goodarzi
  • Publisher :Unknown
  • Release Date :2018-02-05
  • Total pages :560
  • ISBN : 9781119063643
GET BOOK HERE

Summary : The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes, direct to discuss course content or structure.

Advanced DC/AC Inverters

Advanced DC/AC Inverters
  • Author : Fang Lin Luo,Hong Ye
  • Publisher :Unknown
  • Release Date :2017-07-28
  • Total pages :322
  • ISBN : 9781466511385
GET BOOK HERE

Summary : DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors, including more than 50 new circuits. It also discusses recently published cutting-edge topologies. Novel PWM and Multilevel Inverters The book first covers traditional pulse-width-modulation (PWM) inverters before moving on to new quasi-impedance source inverters and soft-switching PWM inverters. It then examines multilevel DC/AC inverters, which have overcome the drawbacks of PWM inverters and provide greater scope for industrial applications. The authors propose four novel multilevel inverters: laddered multilevel inverters, super-lift modulated inverters, switched-capacitor inverters, and switched-inductor inverters. With simple structures and fewer components, these inverters are well suited for renewable energy systems. Get the Best Switching Angles for Any Multilevel Inverter A key topic for multilevel inverters is the need to manage the switching angles to obtain the lowest total harmonic distortion (THD). The authors outline four methods for finding the best switching angles and use simulation waveforms to verify the design. The optimum switching angles for multilevel DC/AC inverters are also listed in tables for quick reference. Application Examples of DC/AC Inverters in Renewable Energy Systems Highlighting the importance of inverters in improving energy saving and power-supply quality, the final chapter of the book supplies design examples for applications in wind turbine and solar panel energy systems. Written by pioneers in advanced conversion and inversion technology, this book guides readers in designing more effective DC/AC inverters for use in renewable energy systems.