Download Power Electronics For Renewable Energy Conversion Basics Book PDF

Download full Power Electronics For Renewable Energy Conversion Basics books PDF, EPUB, Tuebl, Textbook, Mobi or read online Power Electronics For Renewable Energy Conversion Basics anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Power Electronics and Energy Conversion Systems, Fundamentals and Hard-switching Converters

Power Electronics and Energy Conversion Systems, Fundamentals and Hard-switching Converters
  • Author : Adrian Ioinovici
  • Publisher :Unknown
  • Release Date :2013-04-02
  • Total pages :464
  • ISBN : 9781118443354
GET BOOK HERE

Summary : Power Electronics and Energy Conversion Systems is adefinitive five-volume reference spanning classical theory throughpractical applications and consolidating the latest advancements inenergy conversion technology. Comprehensive yet highly accessible,each volume is organised in a basic-to-sophisticated crescendo,providing a single-source reference for undergraduate and graduatestudents, researchers and designers. Volume 1 Fundamentals and Hard-switching Converters introduces thekey challenges in power electronics from basic components tooperation principles and presents classical hard- andsoft-switching DC to DC converters, rectifiers and inverters. At amore advanced level, it provides comprehensive analysis of DC andAC models comparing the available approaches for their derivationand results. A full treatment of DC to DC hard-switching convertersis given, from fundamentals to modern industrial solutions andpractical engineering insight. The author elucidates variouscontradictions and misunderstandings in the literature, forexample, in the treatment of the discontinuous conduction operationor in deriving AC small-signal models of converters. Other key features: • Consolidates the latest advancements in hard-switchingconverters including discontinuous capacitor voltage mode, andtheir use in power-factor-correction applications • Includes fully worked design examples, exercises, and casestudies, with discussion of the practical consequences of eachchoice made during the design • Explains all topics in detail with step-by-step derivationof formulas appropriate for energy conversion courses • End-of-section review of the learned material • Includes topics treated in recent journal, conference andindustry application coverage on solutions, theory and practicalconcerns With emphasis on clear explanation, the text offers both athorough understanding of DC to DC converters for undergraduate andgraduate students in power electronics, and more detailed materialsuitable for researchers, designers and practising engineersworking on the development and design of power electronics. This isan accessible reference for engineering and procurement managersfrom industries such as consumer electronics, integrated circuits,aerospace and renewable energy.

Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications

Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications
  • Author : Haitham Abu-Rub,Mariusz Malinowski,Kamal Al-Haddad
  • Publisher :Unknown
  • Release Date :2014-06-02
  • Total pages :832
  • ISBN : 9781118755501
GET BOOK HERE

Summary : Compiles current research into the analysis and design ofpower electronic converters for industrial applications andrenewable energy systems, presenting modern and future applicationsof power electronics systems in the field of electricalvehicles With emphasis on the importance and long-term viability of PowerElectronics for Renewable Energy this book brings together thestate of the art knowledge and cutting-edge techniques in variousstages of research. The topics included are not currentlyavailable for practicing professionals and aim to enable the readerto directly apply the knowledge gained to their designs. The bookaddresses the practical issues of current and future electric andplug-in hybrid electric vehicles (PHEVs), and focuses primarily onpower electronics and motor drives based solutions for electricvehicle (EV) technologies. Propulsion system requirements and motorsizing for EVs is discussed, along with practical system sizingexamples. Key EV battery technologies are explained as well ascorresponding battery management issues. PHEV power systemarchitectures and advanced power electronics intensive charginginfrastructures for EVs and PHEVs are detailed. EV/PHEV interfacewith renewable energy is described, with practical examples. Thisbook explores new topics for further research needed world-wide,and defines existing challenges, concerns, and selected problemsthat comply with international trends, standards, and programs forelectric power conversion, distribution, and sustainable energydevelopment. It will lead to the advancement of the currentstate-of-the art applications of power electronics for renewableenergy, transportation, and industrial applications and will helpadd experience in the various industries and academia about theenergy conversion technology and distributed energysources. Combines state of the art global expertise to present thelatest research on power electronics and its application intransportation, renewable energy and different industrialapplications Offers an overview of existing technology and future trends,with discussion and analysis of different types of converters andcontrol techniques (power converters, high performance powerdevices, power system, high performance control system and novelapplications) Systematic explanation to provide researchers with enoughbackground and understanding to go deeper in the topics covered inthe book

Power Electronics Basics

Power Electronics Basics
  • Author : Yuriy Rozanov,Sergey E. Ryvkin,Evgeny Chaplygin,Pavel Voronin
  • Publisher :Unknown
  • Release Date :2015-04-23
  • Total pages :489
  • ISBN : 9781482298802
GET BOOK HERE

Summary : Power Electronics Basics: Operating Principles, Design, Formulas, and Applications provides fundamental knowledge for the analysis and design of modern power electronic devices. This concise and user-friendly resource: Explains the basic concepts and most important terms of power electronics Describes the power assemblies, control, and passive components of semiconductor power switches Covers the control of power electronic devices, from mathematical modeling to the analysis of the electrical processes Addresses pulse-width modulation, power quality control, and multilevel, modular, and multicell power converter topologies Discusses line-commutated and resonant converters, as well as inverters and AC converters based on completely controllable switches Explores cutting-edge applications of power electronics, including renewable energy production and storage, fuel cells, and electric drives Power Electronics Basics: Operating Principles, Design, Formulas, and Applications supplies graduate students, industry professionals, researchers, and academics with a solid understanding of the underlying theory, while offering an overview of the latest achievements and development prospects in the power electronics industry.

Renewable Energy Systems

Renewable Energy Systems
  • Author : Fang Lin Luo,Ye Hong
  • Publisher :Unknown
  • Release Date :2017-12-19
  • Total pages :880
  • ISBN : 9781439891100
GET BOOK HERE

Summary : Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems—including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduces more than 200 topologies of advanced converters originally developed by the authors, including 150 updated circuits on modern conversion technologies. It also discusses recently published topologies and thoroughly analyzes new converter circuits. Novel approaches include split-capacitor and split-inductor techniques that can be applied in super-lift and other converters. Resolve Historic Problems in Conversion Technologies Along with offering many cutting-edge techniques, the authors resolve some historic problems, such as the accurate determination of the conduction angle of single-phase rectifiers and power factor correction. They also describe a new series—laddered multilevel inverters—that uses few devices to produce more levels, overcoming the drawbacks of the pulse-width-modulation (PWM) inverter and providing great scope for industrial applications. Tap the Knowledge of Pioneers in the Field This book is written by pioneers in advanced conversion technology who have created a large number of converters, including the world-renowned DC/DC Luo-converters and super-lift Luo-converters. Featuring numerous examples and diagrams, it guides readers in designing advanced converters for use in renewable energy systems.

Alternative Energy in Power Electronics

Alternative Energy in Power Electronics
  • Author : Muhammad H. Rashid
  • Publisher :Unknown
  • Release Date :2014-10-28
  • Total pages :378
  • ISBN : 9780124095342
GET BOOK HERE

Summary : This new resource is a practical overview of designing, testing and troubleshooting power electronics in alternative energy systems, providing you with the most important information on how power electronics components such as inverters, controllers and batteries can play a pivotal role in the successful implementation of green energy solutions for both stand-alone and grid-connected applications. You will learn how to choose the right components for diverse systems, from utility-scale wind farms to photovoltaic panels on single residences, how to get the most out of existing systems, and how to solve the tough challenges particular to alternative energy applications. Whether you are a renewables professional who needs to understand more about how power electronics impact energy output, or a power engineer who is interested in learning what new avenues the alternative energy revolution is opening for your work, start here with advice and explanations from the experts, including equations, diagrams and tables designed to help you understand and succeed. Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells

Electric Renewable Energy Systems

Electric Renewable Energy Systems
  • Author : Muhammad H. Rashid
  • Publisher :Unknown
  • Release Date :2015-11-25
  • Total pages :450
  • ISBN : 9780128006368
GET BOOK HERE

Summary : This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells

Model Predictive Control of Wind Energy Conversion Systems

Model Predictive Control of Wind Energy Conversion Systems
  • Author : Venkata Yaramasu,Bin Wu
  • Publisher :Unknown
  • Release Date :2016-12-19
  • Total pages :512
  • ISBN : 9781118988589
GET BOOK HERE

Summary : Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.

Electrical Energy Conversion and Transport

Electrical Energy Conversion and Transport
  • Author : George G. Karady,Keith E. Holbert
  • Publisher :Unknown
  • Release Date :2013-05-03
  • Total pages :854
  • ISBN : 9781118498033
GET BOOK HERE

Summary : Designed to support interactive teaching and computer assisted self-learning, this second edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have become more important together with the deregulation of the industry. New content explores different power generation methods, including renewable energy generation (solar, wind, fuel cell) and includes new sections that discuss the upcoming Smart Grid and the distributed power generation using renewable energy generation, making the text essential reading material for students and practicing engineers.

Power Electronics Handbook

Power Electronics Handbook
  • Author : Muhammad H. Rashid
  • Publisher :Unknown
  • Release Date :2010-07-19
  • Total pages :1192
  • ISBN : 0080467652
GET BOOK HERE

Summary : Power electronics, which is a rapidly growing area in terms of research and applications, uses modern electronics technology to convert electric power from one form to another, such as ac-dc, dc-dc, dc-ac, and ac-ac with a variable output magnitude and frequency. Power electronics has many applications in our every day life such as air-conditioners, electric cars, sub-way trains, motor drives, renewable energy sources and power supplies for computers. This book covers all aspects of switching devices, converter circuit topologies, control techniques, analytical methods and some examples of their applications. * 25% new content * Reorganized and revised into 8 sections comprising 43 chapters * Coverage of numerous applications, including uninterruptable power supplies and automotive electrical systems * New content in power generation and distribution, including solar power, fuel cells, wind turbines, and flexible transmission

Energy Harvesting

Energy Harvesting
  • Author : Alireza Khaligh,Omer C. Onar
  • Publisher :Unknown
  • Release Date :2017-12-19
  • Total pages :382
  • ISBN : 9781351834025
GET BOOK HERE

Summary : Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.

Advances in Grid-Connected Photovoltaic Power Conversion Systems

Advances in Grid-Connected Photovoltaic Power Conversion Systems
  • Author : Yongheng Yang,Katherine A. Kim,Frede Blaabjerg,Ariya Sangwongwanich
  • Publisher :Unknown
  • Release Date :2018-08-21
  • Total pages :213
  • ISBN : 9780081023402
GET BOOK HERE

Summary : Advances in Grid-Connected Photovoltaic Power Conversion Systems addresses the technological challenges of fluctuating and unreliable power supply in grid-connected photovoltaic (PV) systems to help students, researchers, and engineers work toward more PV installations in the grid to make society more sustainable and reliable while complying with grid regulations. The authors combine their extensive knowledge and experience in this book to address both the basics of the power electronic converter technology and the advances of such practical electric power conversion systems. This book includes extensive, step-by-step practical application examples to assist students and engineers to better understand the role of power electronics in modern PV applications and solve the practical issues in grid-connected PV systems. Offers a step-by-step modeling approach to solving the practical issues and technological challenges in grid-connected PV systems Provides practical application examples to assist the reader to better understand the role of power electronics in modern PV applications Extends to the most modern technologies for grid-friendly PV systems

Power Electronics for Modern Wind Turbines

Power Electronics for Modern Wind Turbines
  • Author : Frede Blaabjerg,Zhe Chen
  • Publisher :Unknown
  • Release Date :2006
  • Total pages :60
  • ISBN : 9781598290325
GET BOOK HERE

Summary : Wind energy is now the world's fastest growing energy source. In the past 10 years, the global wind energy capacity has increased rapidly. The installed global wind power capacity has grown to 47.317GW from about 3.5GW in 1994. The global wind power industry installed 7976 MW in 2004, an increase in total installed generating capacity of 20%. The phenomenal growth in the wind energy industry can be attributed to the concerns to the environmental issues, and research and development of innovative cost-reducing technologies.

Power Conversion and Control of Wind Energy Systems

Power Conversion and Control of Wind Energy Systems
  • Author : Bin Wu,Yongqiang Lang,Navid Zargari,Samir Kouro
  • Publisher :Unknown
  • Release Date :2011-08-09
  • Total pages :480
  • ISBN : 9780470593653
GET BOOK HERE

Summary : The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.

Electricity and Electronics for Renewable Energy Technology

Electricity and Electronics for Renewable Energy Technology
  • Author : Ahmad Hemami
  • Publisher :Unknown
  • Release Date :2017-09-29
  • Total pages :802
  • ISBN : 9781482261783
GET BOOK HERE

Summary : Electricity and Electronics for Renewable Energy Technology: An Introduction provides a foundational understanding of electricity and the methods and devices specific to electricity from renewable sources. The book begins with a brief explanation of the necessary mathematics and then: Addresses the basics of electricity and relationships, motors and generators, transformers, and networks and distribution Tackles the key concepts associated with electronics, diodes and transistors, switching devices, and power converters Covers digital electronics from number systems and logic circuits to encoders and decoders Explores advanced subjects such as reactive power and the operation of a transistor A lab manual and PowerPoint presentation are available with qualifying course adoption. Featuring extensive review questions and practice problems at the end of each chapter, Electricity and Electronics for Renewable Energy Technology: An Introduction instills an essential knowledge of electricity and electronics required for work with renewable energy.

Electric Powertrain

Electric Powertrain
  • Author : John G. Hayes,G. Abas Goodarzi
  • Publisher :Unknown
  • Release Date :2018-02-05
  • Total pages :560
  • ISBN : 9781119063643
GET BOOK HERE

Summary : The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes, direct to discuss course content or structure.

Power Electronics for Renewable and Distributed Energy Systems

Power Electronics for Renewable and Distributed Energy Systems
  • Author : Sudipta Chakraborty,Marcelo G. Simões,William E. Kramer
  • Publisher :Unknown
  • Release Date :2013-06-12
  • Total pages :609
  • ISBN : 9781447151043
GET BOOK HERE

Summary : While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage systems such as battery and fast response storage systems are discussed along with application-specific examples. After setting forth the fundamentals, the chapters focus on more complex topics such as modular power electronics, microgrids and smart grids for integrating renewable and distributed energy. Emerging topics such as advanced electric vehicles and distributed control paradigm for power system control are discussed in the last two chapters. With contributions from subject matter experts, the diagrams and detailed examples provided in each chapter make Power Electronics for Renewable and Distributed Energy Systems a sourcebook for electrical engineers and consultants working to deploy various renewable and distributed energy systems and can serve as a comprehensive guide for the upper-level undergraduates and graduate students across the globe.

Efficiency and Power in Energy Conversion and Storage

Efficiency and Power in Energy Conversion and Storage
  • Author : Thomas Christen
  • Publisher :Unknown
  • Release Date :2018-10-10
  • Total pages :168
  • ISBN : 9780429845253
GET BOOK HERE

Summary : This book provides fundamental theoretical concepts for the understanding, the modelling, and the optimisation of energy conversion and storage devices. The discussion is based on the general footing of efficiency-power relations and energy-power relations (Ragone plots). Efficiency and Power in Energy Conversion and Storage: Basic Physical Concepts, is written for engineers and scientists with a bachelor-degree level of knowledge in physics. It contains: An introductory motivation of the topic A review on equilibrium thermodynamics A primer to linear non-equilibrium thermodynamics and irreversible processes An introduction to endo-reversible thermodynamics The basics on the theory of Ragone plots Derivations of efficiency-power relations or Ragone plots for illustrative examples like heat engines, batteries, capacitors, kinetic energy storage devices, solar power, photodiodes, electro-motors, transformers, and flow turbines An excursion to impedance matching and the optimization of technical devices with respect to economic and related objectives

Power Conversion of Renewable Energy Systems

Power Conversion of Renewable Energy Systems
  • Author : Ewald F. Fuchs,Mohammad A.S. Masoum
  • Publisher :Unknown
  • Release Date :2011-03-31
  • Total pages :692
  • ISBN : 1441979794
GET BOOK HERE

Summary : Power Conversion of Renewable Energy Systems presents an introduction to conventional energy conversion components and systems, as well as those related to renewable energy. This volume introduces systems first, and then in subsequent chapters describes the components of energy systems in detail. Readers will find examples of renewable and conventional energy and power systems, including energy conversion, variable-speed drives and power electronics, in addition to magnetic devices such as transformers and rotating machines. Applications of PSpice, MATLAB, and Mathematica are also included, along with solutions to over 100 application examples. Power Conversion of Renewable Energy Systems aims to instruct readers how to actively apply the theories discussed within. It would be an ideal volume for researchers, students and engineers working with energy systems and renewable energy.

Power Electronic Converters

Power Electronic Converters
  • Author : Teuvo Suntio,Tuomas Messo,Joonas Puukko
  • Publisher :Unknown
  • Release Date :2018-01-04
  • Total pages :720
  • ISBN : 9783527340224
GET BOOK HERE

Summary : Filling the need for a reference that explains the behavior of power electronic converters, this book provides information currently unavailable in similar texts on power electronics. Clearly organized into four parts, the first treats the dynamics and control of conventional converters, while the second part covers the dynamics and control of DC-DC converters in renewable energy applications, including an introduction to the sources as well as the design of current-fed converters applying duality-transformation methods. The third part treats the dynamics and control of three-phase rectifiers in voltage-sourced applications, and the final part looks at the dynamics and control of three-phase inverters in renewable-energy applications. With its future-oriented perspective and advanced, first-hand knowledge, this is a prime resource for researchers and practicing engineers needing a ready reference on the design and control of power electronic converters.

Solar Energy Storage

Solar Energy Storage
  • Author : Bent Sørensen
  • Publisher :Unknown
  • Release Date :2015-06-03
  • Total pages :394
  • ISBN : 9780124095496
GET BOOK HERE

Summary : While solar is the fastest-growing energy source in the world, key concerns around solar power’s inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides that energy storage will be pivotally important in the drive to boost the integration of variable renewable sources into power infrastructures across the globe. Thoughtfully implemented storage technologies can reduce peak demand, improve day-to-day reliability, provide emergency power in case of interrupted generation, reduce consumer and utility costs by easing load balance challenges, decrease emissions, and increase the amount of distributed and renewable energy that makes it into the grid. While energy storage has long been an area of concern for scientists and engineers, there has been no comprehensive single text covering the storage methods available to solar power producers, which leaves a lamentable gap in the literature core to this important field. Solar Energy Storage aims to become the authoritative work on the topic, incorporating contributions from an internationally recognized group of top authors from both industry and academia, focused on providing information from underlying scientific fundamentals to practical applications, and emphasizing the latest technological developments driving this discipline forward. Expert contributing authors explain current and emergent storage technologies for solar, thermal, and photovoltaic applications. Sheds light on the economic status of solar storage facilities, including case studies of the particular challenges that solar energy systems present to remote locations. Includes information on: chemical storage mechanisms, mechanical storage tactics, pumped hydro, thermal storage, and storage strategies for systems of all sizes—from centralized utilities to distributed generation.

Control of Power Electronic Converters and Systems

Control of Power Electronic Converters and Systems
  • Author : Frede Blaabjerg
  • Publisher :Unknown
  • Release Date :2018-01-25
  • Total pages :392
  • ISBN : 9780128054369
GET BOOK HERE

Summary : Control of Power Electronic Converters and Systems examines the theory behind power electronic converter control, including operation, modeling and control of basic converters. The book explores how to manipulate components of power electronics converters and systems to produce a desired effect by controlling system variables. Advances in power electronics enable new applications to emerge and performance improvement in existing applications. These advances rely on control effectiveness, making it essential to apply appropriate control schemes to the converter and system to obtain the desired performance. Discusses different applications and their control Explains the most important controller design methods both in analog and digital Describes different important applications to be used in future industrial products Covers voltage source converters in significant detail Demonstrates applications across a much broader context