**Download Quantum Information Processing And Quantum Error Correction Book PDF**

Download full Quantum Information Processing And Quantum Error Correction books PDF, EPUB, Tuebl, Textbook, Mobi or read online Quantum Information Processing And Quantum Error Correction anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

## Quantum Information Processing and Quantum Error Correction

- Author : Ivan Djordjevic
- Publisher :Unknown
- Release Date :2012
- Total pages :576
- ISBN : 9780123854919

**Summary :** Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

## Quantum Information Processing and Quantum Error Correction

- Author : Ivan Djordjevic
- Publisher :Unknown
- Release Date :2012-05-23
- Total pages :600
- ISBN : 9780123854926

**Summary :** Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction – everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

## Quantum Information Processing, Quantum Computing, and Quantum Error Correction

- Author : Ivan B. Djordjevic
- Publisher :Unknown
- Release Date :2021-02-20
- Total pages :838
- ISBN : 9780128219874

**Summary :** The Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspects of the area, teaching the essentials such as state vectors, operators, density operators, measurements, and dynamics of a quantum system. In additional to the fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and quantum information processing, this edition has been brought fully up to date, outlining the latest research trends. These include: Key topics include: Quantum error correction codes (QECCs), including stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes Quantum information theory, and quantum key distribution (QKD) Fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. Both quantum circuits- and measurement-based quantum computational models are described The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps In-depth analysis of the design and realization of a quantum information processing and quantum error correction circuits This fully up-to-date new edition will be of use to engineers, computer scientists, optical engineers, physicists and mathematicians. A self-contained introduction to quantum information processing, and quantum error correction Integrates quantum information processing, quantum computing, and quantum error correction Describes the latest trends in the quantum information processing, quantum error correction and quantum computing Presents the basic concepts of quantum mechanics In-depth presentation of the design and realization of a quantum information processing and quantum error correction circuit

## Quantum Error Correction

- Author : Daniel A. Lidar,Todd A. Brun
- Publisher :Unknown
- Release Date :2013-09-12
- Total pages :592
- ISBN : 9781107433830

**Summary :** Quantum computation and information is one of the most exciting developments in science and technology of the last twenty years. To achieve large scale quantum computers and communication networks it is essential not only to overcome noise in stored quantum information, but also in general faulty quantum operations. Scalable quantum computers require a far-reaching theory of fault-tolerant quantum computation. This comprehensive text, written by leading experts in the field, focuses on quantum error correction and thoroughly covers the theory as well as experimental and practical issues. The book is not limited to a single approach, but reviews many different methods to control quantum errors, including topological codes, dynamical decoupling and decoherence-free subspaces. Basic subjects as well as advanced theory and a survey of topics from cutting-edge research make this book invaluable both as a pedagogical introduction at the graduate level and as a reference for experts in quantum information science.

## Quantum Error Correction and Fault Tolerant Quantum Computing

- Author : Frank Gaitan
- Publisher :Unknown
- Release Date :2018-10-03
- Total pages :312
- ISBN : 9781420006681

**Summary :** It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impossible. It provides in-depth coverage on the most important class of codes discovered to date—quantum stabilizer codes. It brings together the central themes of quantum error correction and fault-tolerant procedures to prove the accuracy threshold theorem for a particular noise error model. The author also includes a derivation of well-known bounds on the parameters of quantum error correcting code. Packed with over 40 real-world problems, 35 field exercises, and 17 worked-out examples, this book is the essential resource for any researcher interested in entering the quantum field as well as for those who want to understand how the unexpected realization of quantum computing is possible.

## Classical and Quantum Information

- Author : Dan C. Marinescu
- Publisher :Unknown
- Release Date :2011-01-07
- Total pages :744
- ISBN : 0123838754

**Summary :** A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes Covers both classical and quantum information theory and error correcting codes The last chapter of the book covers physical implementation of quantum information processing devices Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information

## Quantum Computation and Quantum Information

- Author : Michael A. Nielsen,Isaac L. Chuang,Isaac L.. Chuang
- Publisher :Unknown
- Release Date :2000-10-23
- Total pages :676
- ISBN : 0521635039

**Summary :** First-ever comprehensive introduction to the major new subject of quantum computing and quantum information.

## Quantum Computing

- Author : Eleanor G. Rieffel,Wolfgang H. Polak
- Publisher :Unknown
- Release Date :2011-03-04
- Total pages :372
- ISBN : 9780262015066

**Summary :** A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.

## Quantum Communication, Computing, and Measurement 2

- Author : Prem Kumar,G. Mauro D'Ariano,Osamu Hirota
- Publisher :Unknown
- Release Date :2007-05-08
- Total pages :534
- ISBN : 9780306470974

**Summary :** Based on the Fourth International Conference on Quantum Communication, Measurement and Computing, this volume brings together scientists working in the interdisciplinary fields of quantum communication science and technology. Topics include quantum information theory, quantum computing, stochastic processes and filtering, and quantum measurement theory

## Introduction to Quantum Information Science

- Author : Vlatko Vedral
- Publisher :Unknown
- Release Date :2006-09-28
- Total pages :183
- ISBN : 9780199215706

**Summary :** In addition to treating quantum communication, entanglement and algorithms, this book also addresses a number of miscellaneous topics, such as Maxwell's demon, Landauer's erasure, the Bekenstein bound and Caratheodory's treatment of the Second law of thermodyanmics.

## Quantum Teleportation and Entanglement

- Author : Akira Furusawa,Peter van Loock
- Publisher :Unknown
- Release Date :2011-05-03
- Total pages :352
- ISBN : 9783527635290

**Summary :** Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information.

## Quantum Computing

- Author : National Academies of Sciences, Engineering, and Medicine,Division on Engineering and Physical Sciences,Intelligence Community Studies Board,Computer Science and Telecommunications Board,Committee on Technical Assessment of the Feasibility and Implications of Quantum Computing
- Publisher :Unknown
- Release Date :2019-04-27
- Total pages :272
- ISBN : 9780309479691

**Summary :** Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

## Quantum Information Meets Quantum Matter

- Author : Bei Zeng,Xie Chen,Duan-Lu Zhou,Xiao-Gang Wen
- Publisher :Unknown
- Release Date :2019-03-28
- Total pages :364
- ISBN : 9781493990849

**Summary :** This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics – the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.

## Elements of Quantum Computation and Quantum Communication

- Author : Anirban Pathak
- Publisher :Unknown
- Release Date :2013-06-20
- Total pages :340
- ISBN : 9781466517929

**Summary :** While there are many available textbooks on quantum information theory, most are either too technical for beginners or not complete enough. Filling this gap, Elements of Quantum Computation and Quantum Communication gives a clear, self-contained introduction to quantum computation and communication. Written primarily for undergraduate students in p

## An Introduction to Quantum Computing

- Author : Phillip Kaye,Raymond Laflamme,Michele Mosca
- Publisher :Unknown
- Release Date :2007
- Total pages :274
- ISBN : 9780198570004

**Summary :** The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.

## Molecular Nanomagnets

- Author : Dante Gatteschi,Roberta Sessoli,Jacques Villain
- Publisher :Unknown
- Release Date :2011-04-14
- Total pages :416
- ISBN : 9780191620850

**Summary :** Nanomagnetism is a rapidly expanding area of research which appears to be able to provide novel applications. Magnetic molecules are at the very bottom of the possible size of nanomagnets and they provide a unique opportunity to observe the coexistence of classical and quantum properties. The discovery in the early 90's that a cluster comprising twelve manganese ions shows hysteresis of molecular origin, and later proved evidence of quantum effects, opened a new research area which is still flourishing through the collaboration of chemists and physicists. This book is the first attempt to cover in detail the new area of molecular nanomagnetism, for which no other book is available. In fact research and review articles, and book chapters are the only tools available for newcomers and the experts in the field. It is written by the chemists originators and by a theorist who has been one of the protagonists of the development of the field, and is explicitly addressed to an audience of chemists and physicists, aiming to use a language suitable for the two communities.

## Quantum Computation and Quantum Information Theory

- Author : Chiara Macchiavello,G. M. Palma,Anton Zeilinger
- Publisher :Unknown
- Release Date :2000
- Total pages :517
- ISBN : 9789810241179

**Summary :** Quantum Entanglement Manipulation - Quantum Algorithms - Quantum Complexity - Quantum Error Correction - Quantum Channels - Entanglement Purification and Long-Distance Quantum Communication - Quantum Key Distribution - Cavity Quantum Electrodynamics - Quantum Computation with Ion Traps - Josephson Junctions and Quantum Computation - Quantum Computing in Optical Lattices - Quantum Computation and Quantum Communication with Electrons - NMR Quantum Computing.

## Quantum Entanglement and Information Processing

- Author : Anonim
- Publisher :Unknown
- Release Date :2004-11-05
- Total pages :638
- ISBN : 0080535429

**Summary :** It has been recognised recently that the strange features of the quantum world could be used for new information transmission or processing functions such as quantum cryptography or, more ambitiously, quantum computing. These fascinating perspectives renewed the interest in fundamental quantum properties and lead to important theoretical advances, such as quantum algorithms and quantum error correction codes. On the experimental side, remarkable advances have been achieved in quantum optics, solid state physics or nuclear magnetic resonance. This book presents the lecture notes of the Les Houches Summer School on ‘Quantum entanglement and information processing’. Following the long tradition of the les Houches schools, it provides a comprehensive and pedagogical approach of the whole field, written by renowned specialists. One major goal of this book is to establish connections between the communities of quantum optics and of quantum electronic devices working in the area of quantum computing. When two communities share the same goals, the universality of physics unavoidably leads to similar developments. However, the communication barrier is often high, and few physicists are able to overcome it. This school has contributed to bridge the existing gap between communities, for the benefit of the future actors in the field of quantum computing. The book thus combines introductory chapters, providing the reader with a sufficiently wide theoretical framework in quantum information, quantum optics and quantum circuits physics, with more specialized presentations of recent theoretical and experimental advances in the field. This structure makes the book accessible to any graduate student having a good knowledge of basic quantum mechanics, and extremely useful to researchers. · Covers quantum optics, solid state physics and NMR implementations · Pedagogical approach combining introductory lectures and advanced chapters · Written by leading experts in the field · Accessible to all graduate students with a basic knowledge of quantum mechanics

## Quantum Computer Science

- Author : N. David Mermin
- Publisher :Unknown
- Release Date :2007-08-30
- Total pages :229
- ISBN : 1139466801

**Summary :** In the 1990's it was realized that quantum physics has some spectacular applications in computer science. This book is a concise introduction to quantum computation, developing the basic elements of this new branch of computational theory without assuming any background in physics. It begins with an introduction to the quantum theory from a computer-science perspective. It illustrates the quantum-computational approach with several elementary examples of quantum speed-up, before moving to the major applications: Shor's factoring algorithm, Grover's search algorithm, and quantum error correction. The book is intended primarily for computer scientists who know nothing about quantum theory, but will also be of interest to physicists who want to learn the theory of quantum computation, and philosophers of science interested in quantum foundational issues. It evolved during six years of teaching the subject to undergraduates and graduate students in computer science, mathematics, engineering, and physics, at Cornell University.

## Protecting Information

- Author : Susan Loepp,William K. Wootters
- Publisher :Unknown
- Release Date :2006-07-10
- Total pages :229
- ISBN : 9781139457668

**Summary :** For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices.

## Quantum Computing

- Author : Parag Lala
- Publisher :Unknown
- Release Date :2019-02-01
- Total pages :208
- ISBN : 9781260123128

**Summary :** A self-contained, reader-friendly introduction to the principles and applications of quantum computing Especially valuable to those without a prior knowledge of quantum mechanics, this electrical engineering text presents the concepts and workings of quantum information processing systems in a clear, straightforward, and practical manner. The book is written in a style that helps readers who are not familiar with non-classical information processing more easily grasp the essential concepts; only prior exposure to classical physics, basic digital design, and introductory linear algebra is assumed. Quantum Computing: A Beginner’s Introduction presents each topic in a tutorial style with examples, illustrations, and diagrams to clarify the material. Written by an experienced electrical engineering educator and author, this is a self-contained resource, with all the necessary pre-requisite material included within the text. Coverage includes: •Complex Numbers, Vector Space, and Dirac Notation •Basics of Quantum Mechanics •Matrices and Operators •Boolean Algebra, Logic Gates and Quantum Information Processing •Quantum Gates and Circuit •Tensor Products, Superposition and Quantum Entanglement •Teleportation and Superdense Coding •Quantum Error Correction •Quantum Algorithms •Quantum Cryptography