Download Reliability Analysis Of Dynamic Systems Book PDF

Download full Reliability Analysis Of Dynamic Systems books PDF, EPUB, Tuebl, Textbook, Mobi or read online Reliability Analysis Of Dynamic Systems anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Reliability Analysis of Dynamic Systems

Reliability Analysis of Dynamic Systems
  • Author : Bin Wu
  • Publisher :Unknown
  • Release Date :2013-06-19
  • Total pages :224
  • ISBN : 9780124077393
GET BOOK HERE

Summary : Featuring aerospace examples and applications, Reliability Analysis of Dynamic Systems presents the very latest probabilistic techniques for accurate and efficient dynamic system reliability analysis. While other books cover more broadly the reliability techniques and challenges related to large systems, Dr Bin Wu presents a focused discussion of new methods particularly relevant to the reliability analysis of large aerospace systems under harmonic loads in the low frequency range. Developed and written to help you respond to challenges such as non-linearity of the failure surface, intensive computational costs and complexity in your dynamic system, Reliability Analysis of Dynamic Systems is a specific, detailed and application-focused reference for engineers, researchers and graduate students looking for the latest modeling solutions. The Shanghai Jiao Tong University Press Aerospace Series publishes titles that cover the latest advances in research and development in aerospace. Its scope includes theoretical studies, design methods, and real-world implementations and applications. The readership for the series is broad, reflecting the wide range of aerospace interest and application, but focuses on engineering. Forthcoming titles in the Shanghai Jiao Tong University Press Aerospace Series: Reliability Analysis of Dynamic Systems • Wake Vortex Control • Aeroacoustics: Fundamentals and Applications in Aeropropulsion Systems • Computational Intelligence in Aerospace Design • Unsteady Flow and Aeroelasticity in Turbomachinery Authored by a leading figure in Chinese aerospace with 20 years’ professional experience in reliability analysis and engineering simulation. Offers solutions to the challenges of non-linearity, intensive computational cost and complexity in reliability assessment. Aerospace applications and examples used throughout to illustrate accuracy and efficiency achieved with new methods.

Efficient Methods for the Reliability Analysis of Dynamic Systems

Efficient Methods for the Reliability Analysis of Dynamic Systems
  • Author : Bin Wu
  • Publisher :Unknown
  • Release Date :2007
  • Total pages :229
  • ISBN : OCLC:890156084
GET BOOK HERE

Summary :

Dynamic System Reliability

Dynamic System Reliability
  • Author : Liudong Xing,Gregory Levitin,Chaonan Wang
  • Publisher :Unknown
  • Release Date :2019-03-11
  • Total pages :248
  • ISBN : 9781119507635
GET BOOK HERE

Summary : Offers timely and comprehensive coverage of dynamic system reliability theory This book focuses on hot issues of dynamic system reliability, systematically introducing the reliability modeling and analysis methods for systems with imperfect fault coverage, systems with function dependence, systems subject to deterministic or probabilistic common-cause failures, systems subject to deterministic or probabilistic competing failures, and dynamic standby sparing systems. It presents recent developments of such extensions involving reliability modelling theory, reliability evaluation methods, and features numerous case studies based on real-world examples. The presented dynamic reliability theory can enable a more accurate representation of actual complex system behavior, thus more effectively guiding the reliable design of real-world critical systems. Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors begins by describing the evolution from the traditional static reliability theory to the dynamic system reliability theory, and provides a detailed investigation of dynamic and dependent behaviors in subsequent chapters. Although written for those with a background in basic probability theory and stochastic processes, the book includes a chapter reviewing the fundamentals that readers need to know in order to understand contents of other chapters which cover advanced topics in reliability theory and case studies. The first book systematically focusing on dynamic system reliability modelling and analysis theory Provides a comprehensive treatment on imperfect fault coverage (single-level/multi-level or modular), function dependence, common cause failures (deterministic and probabilistic), competing failures (deterministic and probabilistic), and dynamic standby sparing Includes abundant illustrative examples and case studies based on real-world systems Covers recent advances in combinatorial models and algorithms for dynamic system reliability analysis Offers a rich set of references, providing helpful resources for readers to pursue further research and study of the topics Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors is an excellent book for undergraduate and graduate students, and engineers and researchers in reliability and related disciplines.

Reliability Analysis of Dynamic Systems

Reliability Analysis of Dynamic Systems
  • Author : Bin Wu
  • Publisher :Unknown
  • Release Date :2014-09-22
  • Total pages :224
  • ISBN : 0323282849
GET BOOK HERE

Summary : Featuring aerospace examples and applications, Reliability Analysis of Dynamic Systems presents the very latest probabilistic techniques for accurate and efficient dynamic system reliability analysis. While other books cover more broadly the reliability techniques and challenges related to large systems, Dr Bin Wu presents a focused discussion of new methods particularly relevant to the reliability analysis of large aerospace systems under harmonic loads in the low frequency range. Developed and written to help you respond to challenges such as non-linearity of the failure surface, intensive computational costs and complexity in your dynamic system, Reliability Analysis of Dynamic Systems is a specific, detailed and application-focused reference for engineers, researchers and graduate students looking for the latest modeling solutions. The Shanghai Jiao Tong University Press Aerospace Series publishes titles that cover the latest advances in research and development in aerospace. Its scope includes theoretical studies, design methods, and real-world implementations and applications. The readership for the series is broad, reflecting the wide range of aerospace interest and application, but focuses on engineering. Forthcoming titles in the Shanghai Jiao Tong University Press Aerospace Series: Reliability Analysis of Dynamic Systems . Wake Vortex Control . Aeroacoustics: Fundamentals and Applications in Aeropropulsion Systems . Computational Intelligence in Aerospace Design . Unsteady Flow and Aeroelasticity in Turbomachinery Authored by a leading figure in Chinese aerospace with 20 years' professional experience in reliability analysis and engineering simulation. Offers solutions to the challenges of non-linearity, intensive computational cost and complexity in reliability assessment. Aerospace applications and examples used throughout to illustrate accuracy and efficiency achieved with new methods.

Reliability Analysis of Complex Dynamic Systems

Reliability Analysis of Complex Dynamic Systems
  • Author : Prashanthi Boddu
  • Publisher :Unknown
  • Release Date :2008
  • Total pages :180
  • ISBN : OCLC:326877387
GET BOOK HERE

Summary :

Modern Dynamic Reliability Analysis for Multi-state Systems

Modern Dynamic Reliability Analysis for Multi-state Systems
  • Author : Anatoly Lisnianski
  • Publisher :Unknown
  • Release Date :2021
  • Total pages :229
  • ISBN : 9783030524883
GET BOOK HERE

Summary :

Reliability Methods in Dynamic System Analysis

Reliability Methods in Dynamic System Analysis
  • Author : Brad Ernest Munoz
  • Publisher :Unknown
  • Release Date :2012
  • Total pages :202
  • ISBN : OCLC:841237017
GET BOOK HERE

Summary : Standard techniques used to analyze a system's response with uncertain system parameters or inputs, are generally Importance sampling methods. Sampling methods require a large number of simulation runs before the system output statistics can be analyzed. As model fidelity increases, sampling techniques become computationally infeasible, and Reliability methods have gained popularity as an analysis method that requires significantly fewer simulation runs. Reliability analysis is an analytic technique which finds a particular point in the design space that can accurately be related to the probability of system failure. However, application to dynamic systems have remained limited. In the following thesis a First Order Reliability Method (FORM) is used to determine the failure probability of a dynamic system due to system/input uncertainties. A pendulum cart system is used as a case study to demonstrate the FORM on a dynamic system. Three failure modes are discussed which correspond to the maximum pendulum angle, the maximum system velocity, and a combined requirement that neither the maximum pendulum angle or system velocity are exceeded. An explicit formulation is generated from the implicit formulation using a Response Surface Methodology, and the FORM is performed using the explicit estimate. Although the analysis converges with minimal simulation computations, attempts to verify FORM results illuminate current limitations of the methodology. The results of this initial study conclude that, currently, sampling techniques are necessary to verify the FORM results, which restricts the potential applications of the FORM methodology. Suggested future work focuses on result verification without the use of Importance sampling which would allow Reliability methods to have widespread applicability.

Repairable Systems Reliability Analysis

Repairable Systems Reliability Analysis
  • Author : Rajiv Nandan Rai,Sanjay Kumar Chaturvedi,Nomesh Bolia
  • Publisher :Unknown
  • Release Date :2020-10-20
  • Total pages :400
  • ISBN : 9781119526278
GET BOOK HERE

Summary : Most of the reliability literature is directed towards non repairable systems, that is, systems that fail are discarded. This book is mainly dedicated towards providing coverage to the reliability modeling and analysis of repairable systems that are repaired and not replaced when they fail. Most of the equipment - mechanical or otherwise -are repairable and are subjected to maintenance actions- reactive or proactive- at various levels. Maintenance actions are carried out either to preserve a system or to renovate it to a specified functionable state. Maintenance actions are also characterized by the degree (perfect or imperfect) to which a system can be restored, i.e., to an ‘as good as new condition’ (AGAN), or ‘as bad as old condition’ (ABAO). Mathematically perfect repair is modeled using a renewal process (RP). Since it represents much idealized situation, this model has restricted applications in the analysis of repairable systems. At the other extreme, the ABAO repair is mathematically modelled using a Non-Homogenous Poisson Process (NHPP). These assumptions are very unrealistic for probabilistic modeling and leads to major distortions in statistical analysis. This unique book provides a comprehensive framework for the modeling and analysis of repairable systems considering both the non- parametric and parametric approaches to deal with the failure data. The book presents MCF based non-parametric approach with several illustrative examples and the generalized renewal process (GRP) based arithmetic reduction of age (ARA) models along with its applications to the systems failure data from aviation industry. The book also covers various multi-criteria decision-making (MCDM), integrated with repairable systems reliability analysis models to provide a much better insight into imperfect repair and maintenance data analysis. A complete chapter on an integrated framework for procurement process is added which will of a great assistance to the readers in enhancing the potential of their respective organization. This book also presents FMEA methods tailored for GRP based repairs. This text has primarily emerged from the industrial experience and research work of the authors. A number of illustrations have been included to make the subject lucid and vivid even to the readers who are relatively new to this area. Besides, various examples have been provided to display the applicability of presented models and methodologies to assist the readers in applying the concepts presented in this book.

Probabilistic Assessment of Dynamic System Performance

Probabilistic Assessment of Dynamic System Performance
  • Author : Anonim
  • Publisher :Unknown
  • Release Date :1993
  • Total pages :378
  • ISBN : OCLC:68392326
GET BOOK HERE

Summary : Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safe operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.

Sub-structure Coupling for Dynamic Analysis

Sub-structure Coupling for Dynamic Analysis
  • Author : Hector Jensen,Costas Papadimitriou
  • Publisher :Unknown
  • Release Date :2019-03-26
  • Total pages :227
  • ISBN : 9783030128197
GET BOOK HERE

Summary : This book combines a model reduction technique with an efficient parametrization scheme for the purpose of solving a class of complex and computationally expensive simulation-based problems involving finite element models. These problems, which have a wide range of important applications in several engineering fields, include reliability analysis, structural dynamic simulation, sensitivity analysis, reliability-based design optimization, Bayesian model validation, uncertainty quantification and propagation, etc. The solution of this type of problems requires a large number of dynamic re-analyses. To cope with this difficulty, a model reduction technique known as substructure coupling for dynamic analysis is considered. While the use of reduced order models alleviates part of the computational effort, their repetitive generation during the simulation processes can be computational expensive due to the substantial computational overhead that arises at the substructure level. In this regard, an efficient finite element model parametrization scheme is considered. When the division of the structural model is guided by such a parametrization scheme, the generation of a small number of reduced order models is sufficient to run the large number of dynamic re-analyses. Thus, a drastic reduction in computational effort is achieved without compromising the accuracy of the results. The capabilities of the developed procedures are demonstrated in a number of simulation-based problems involving uncertainty.

An Efficient Method to Assess Reliability Under Dynamic Stochastic Loads

An Efficient Method to Assess Reliability Under Dynamic Stochastic Loads
  • Author : Mahdi Norouzi
  • Publisher :Unknown
  • Release Date :2012
  • Total pages :218
  • ISBN : OCLC:863233326
GET BOOK HERE

Summary : The objective of this research is to develop an efficient method to study the reliability of dynamic large complex engineering systems. In design of real-life dynamic systems, there are significant uncertainties in modeling the input. For instance, for an offshore wind turbine, there are considerable uncertainties in the power spectral density functions of the wave elevations or the wind speeds. Therefore, it is necessary to evaluate the reliability of a system for different power spectral density functions of the input loads. The reliability analysis of dynamic systems requires performing Monte Carlo simulations in time domain with thousands of replications. The computational cost of such analyses is prohibitive for most real-life complex systems. In this study, a new method is proposed to reduce the computational cost of the reliability study of dynamic systems. This method is applicable to the dynamic systems in which the loads are represented using power spectral density functions. This goal is achieved by estimating the reliability for several power spectral densities of a load by re-weighting the results of a single Monte Carlo simulation for one power spectral density function of the load. The proposed approach is based on Probabilistic Re-analysis method that is similar to the idea of Importance Sampling. That is the main variance reduction technique, which is used to lower the computational cost of Monte Carlo simulation. The proposed method extends the application of the Probabilistic Re-Analysis, which has already been applied to static problems, to dynamic problems. Static problems are modeled using random variables that are invariant with time whereas in dynamic systems both the excitation and the response are stochastic processes varying with time. Utilizing Shinozuka's method is the key idea because it enables representing a time varying random process in terms of random variables. This new approach can significantly lower the cost of the sensitivity reliability analysis of dynamic systems. This study also presents a new approach to apply Subset Simulation efficiently to dynamic problems. Subset Simulation is more efficient than Monte Carlo simulation in estimating the probability of first excursion failure of highly reliable systems. This method is based on the idea that a small failure probability can be calculated as a product of larger conditional probabilities of intermediate events. The method is more efficient because it is much faster to calculate several large probabilities than a single low probability. However, Subset Simulation is often impractical for random vibration problems because it requires considering numerous random variables that makes it very difficult to explore the space of the random variables due to its large dimension. A new approach is proposed in this research to perform Subset Simulation that utilizes Shinozuka's equation to calculate the time series of the loads from a power spectral density function. The commutative property of Shinozuka's equation enables taking advantage of its symmetry, thereby reducing the dimension of the space of the random variables in dynamic problems. Therefore, performing Subset Simulation using the new approach is more efficient than the original Subset Simulation. In addition, Shinozuka's equation assists in integrating Subset Simulation with Probabilistic Re-analysis. This new method, which is called Subset-PRRA, is more efficient than regular Probabilistic Re-analysis as the latter is based on Monte Carlo simulation, whereas Subset-PRRA reuses the results of Subset Simulation. For an offshore wind turbine, the wind and waves are represented by power spectral density functions; Subset-PRRA seems to be a promising tool to cut the computational cost of the sensitivity analysis of first excursion reliability of an offshore wind turbine. The application of the Probabilistic Re-analysis in reliability analysis of an offshore wind turbine is demonstrated in this research through two examples in which only changes in the power spectral density function of the wave elevation are considered. The method is also applicable to the case that the wind spectrum changes, but requires calculation of wind field time histories using Shinozuka's method. Finally, a probabilistic approach for the structural design of an offshore wind turbine under the Lake Erie environment is presented. To perform probabilistic design, the dependence between wind, wave and period should be modeled accurately. Modeling the dependence between wind and wave is expensive, as it requires a large amount of data. Many researchers, similar to the approach presented in the International Electrotechnical Commission standards, assume that wave height follows standard distributions conditional on wind speed. In this work, an alternative approach is used that is based on the application of copulas. This approach is more complete because the joint distribution is obtained without making any assumption on the conditional distributions. Using the joint distribution, a methodology to find the required load capacity of the structure to meet the target reliability based on Monte Carlo simulation and Tail-fitting method is presented.

Reliability of Dynamic Systems Under Limited Information

Reliability of Dynamic Systems Under Limited Information
  • Author : Richard V. Field (Jr),Mircea Grigoriu
  • Publisher :Unknown
  • Release Date :2006
  • Total pages :46
  • ISBN : OCLC:316305166
GET BOOK HERE

Summary : A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.

Advances in System Reliability Engineering

Advances in System Reliability Engineering
  • Author : Mangey Ram,J. Paulo Davim
  • Publisher :Unknown
  • Release Date :2018-11-24
  • Total pages :318
  • ISBN : 9780128162729
GET BOOK HERE

Summary : Recent Advances in System Reliability Engineering describes and evaluates the latest tools, techniques, strategies, and methods in this topic for a variety of applications. Special emphasis is put on simulation and modelling technology which is growing in influence in industry, and presents challenges as well as opportunities to reliability and systems engineers. Several manufacturing engineering applications are addressed, making this a particularly valuable reference for readers in that sector. Contains comprehensive discussions on state-of-the-art tools, techniques, and strategies from industry Connects the latest academic research to applications in industry including system reliability, safety assessment, and preventive maintenance Gives an in-depth analysis of the benefits and applications of modelling and simulation to reliability

Reliability and Availability Engineering

Reliability and Availability Engineering
  • Author : Kishor S. Trivedi,Andrea Bobbio
  • Publisher :Unknown
  • Release Date :2017-08-03
  • Total pages :726
  • ISBN : 9781107099500
GET BOOK HERE

Summary : Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.

Reliability and Safety In Hazardous Work Systems

Reliability and Safety In Hazardous Work Systems
  • Author : Bernhard Wilpert Technische Universitaet, Berlin, Germany; Thoralf Qvale.
  • Publisher :Unknown
  • Release Date :2013-05-24
  • Total pages :272
  • ISBN : 9781134833214
GET BOOK HERE

Summary : This volume contains a selection of original contributions from internationally reputed scholars in the field of risk management in socio?technical systems with high hazard potential. Its first major section addresses fundamental psychological and socio?technical concepts in the field of risk perception, risk management and learning systems for safety improvement. The second section deals with the variety of procedures for system safety analysis. It covers strategies of analyzing automation problems and of safety culture as well as the analysis of social dynamics in field settings and of field experiments. Its third part then illustrates the utilization of basic concepts and analytic approaches by way of case studies of designing man?machine systems and in various industrial sectors such as intensive care wards, aviation, offfshore oil drilling and chemical industry. In linking basic theoretical conceptual notions and analytic strategies to detailed case studies in the area of hazardous work organizations the volume differs from and complements more theoretical works such as Human Error (J. Reason, 1990) and more general approaches such as New Technologies and Human Error (J. Rasmussen, K. Duncan, J. Leplat, Eds.)

Sensitivity Analysis of Dynamic Systems Subjected to Seismic Loads

Sensitivity Analysis of Dynamic Systems Subjected to Seismic Loads
  • Author : Christopher Roth
  • Publisher :Unknown
  • Release Date :2001
  • Total pages :518
  • ISBN : CORNELL:31924091033955
GET BOOK HERE

Summary :

Handbook of Probabilistic Models

Handbook of Probabilistic Models
  • Author : Pijush Samui,Dieu Tien Bui,Subrata Chakraborty,Ravinesh Deo
  • Publisher :Unknown
  • Release Date :2019-10-05
  • Total pages :590
  • ISBN : 9780128165461
GET BOOK HERE

Summary : Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. Explains the application of advanced probabilistic models encompassing multidisciplinary research Applies probabilistic modeling to emerging areas in engineering Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems

Modern Dynamic Reliability Analysis for Multi-state Systems

Modern Dynamic Reliability Analysis for Multi-state Systems
  • Author : Anatoly Lisnianski,Ilia Frenkel,Lev Khvatskin
  • Publisher :Unknown
  • Release Date :2020-08-25
  • Total pages :184
  • ISBN : 3030524876
GET BOOK HERE

Summary : This book discusses recent developments in dynamic reliability in multi-state systems (MSS), addressing such important issues as reliability and availability analysis of aging MSS, the impact of initial conditions on MSS reliability and availability, changing importance of components over time in MSS with aging components, and the determination of age-replacement policies. It also describes modifications of traditional methods, such as Markov processes with rewards, as well as a modern mathematical method based on the extended universal generating function technique, the Lz-transform, presenting various successful applications and demonstrating their use in real-world problems. This book provides theoretical insights, information on practical applications, and real-world case studies that are of interest to engineers and industrial managers as well as researchers. It also serves as a textbook or supporting text for graduate and postgraduate courses in industrial, electrical, and mechanical engineering.

The Handbook of Reliability, Maintenance, and System Safety through Mathematical Modeling

The Handbook of Reliability, Maintenance, and System Safety through Mathematical Modeling
  • Author : Amit Kumar,Mangey Ram
  • Publisher :Unknown
  • Release Date :2021-01-09
  • Total pages :520
  • ISBN : 9780128231586
GET BOOK HERE

Summary : The Handbook of Reliability, Maintenance, and System Safety through Mathematical Modeling discusses the many factors affect reliability and performance, including engineering design, materials, manufacturing, operations, maintenance, and many more. Reliability is one of the fundamental criteria in engineering systems design, with maintenance serving as a way to support reliability throughout a system’s life. Addressing these issues requires information, modeling, analysis and testing. Different techniques are proposed and implemented to help readers analyze various behavior measures (in terms of the functioning and performance) of systems. Enables mathematicians to convert any process or system into a model that can be analyzed through a specific technique Examines reliability and mathematical modeling in a variety of disciplines, unlike competitors which typically examine only one Includes a table of contents with simple to complex examples, starting with basic models and then refining modeling approaches step-by-step

Contribution to Reliable Control of Dynamic Systems

Contribution to Reliable Control of Dynamic Systems
  • Author : Jean Carlo Salazar Cortés
  • Publisher :Unknown
  • Release Date :2020
  • Total pages :175
  • ISBN : OCLC:1224095109
GET BOOK HERE

Summary : This thesis presents sorne contributions to the field of Health-Aware Control (HAC) of dynamic systems.In the first part of this thesis, a review of the concepts and methodologies related to reliability versus degradation and fault tolerant control versus health-aware control is presented. Firstly, in an attempt to unify concepts, an overview of HAC, degradation, and reliability modeling including some of the most relevant theoretical and applied contributions is given.Moreover, reliability modeling is formalized and exemplified using the structure function, Bayesian networks (BNs) and Dynamic Bayesian networks (DBNs) as modeling tools in reliability analysis. In addition, some Reliability lmportance Measures (RIMs) are presented.In particular, this thesis develops BNs models for overall system reliability analysis through the use of Bayesian inference techniques. Bayesian networks are powerful tools in system reliability assessment due to their flexibility in modeling the reliability structure of complex systems.For the HAC scheme implementation, this thesis presents and discusses the integration of actuators health information by means of RIMs and degradation in Model Predictive Control (MPC) and Linear Quadratic Regulator algorithms.In the proposed strategies, the cost function parameters are tuned using RIMs. The methodology is able to avoid the occurrence of catastrophic and incipient faults by monitoring the overall system reliability.The proposed HAC strategies are applied to a Drinking Water Network (DWN) and a multirotor UAV system. Moreover, a third approach, which uses MPC and restricts the degradation of the system components is applied to a twin rotor system.Finally, this thesis presents and discusses two reliability interpretations. These interpretations, namely instantaneous and expected, differ in the manner how reliability is evaluated and how its evolution along time is considered. This comparison is made within a HAC framework and studies the system reliability under both approaches.

Reliability Design of Mechanical Systems

Reliability Design of Mechanical Systems
  • Author : Seongwoo Woo
  • Publisher :Unknown
  • Release Date :2019-07-03
  • Total pages :464
  • ISBN : 9789811372360
GET BOOK HERE

Summary : The revised edition of this book offers an expanded overview of the reliability design of mechanical systems and describes the reliability methodology, including a parametric accelerated life test (ALT) plan, a load analysis, a tailored series of parametric ALTs with action plans, and an evaluation of the final designs to ensure the design requirements are satisfied. It covers both the quantitative and qualitative approaches of the reliability design forming in the development process of mechanical products, with a focus on parametric ALT and illustrated via case studies. This new reliability methodology – parametric ALT should help mechanical and civil engineers to uncover design parameters improving product design and avoiding recalls. Updated chapters cover product recalls and assessment of their significance, modern definitions in reliability engineering, parametric accelerated life testing in mechanical systems, and extended case studies. For this revised edition, one new chapter has been introduced to reflect recent developments in analysis of fluid motion and mechanical vibration. Other chapters are expanded and updated to improve the explanation of topics including structures and load analysis, failure mechanics, design and reliability testing, and mechanical system failure. The broad scope gives the reader an overview of the state-of-the-art in the reliability design of mechanical systems and an indication of future directions and applications. It will serve as a solid introduction to the field for advanced students, and a valuable reference for those working in the development of mechanical systems and related areas.