Download Structural Materials For Generation Iv Nuclear Reactors Book PDF

Download full Structural Materials For Generation Iv Nuclear Reactors books PDF, EPUB, Tuebl, Textbook, Mobi or read online Structural Materials For Generation Iv Nuclear Reactors anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Structural Materials for Generation IV Nuclear Reactors

Structural Materials for Generation IV Nuclear Reactors
  • Author : Pascal Yvon
  • Publisher :Unknown
  • Release Date :2016-08-27
  • Total pages :684
  • ISBN : 9780081009123
GET BOOK HERE

Summary : Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates Written by an expert in that particular area

Handbook of Generation IV Nuclear Reactors

Handbook of Generation IV Nuclear Reactors
  • Author : Igor Pioro
  • Publisher :Unknown
  • Release Date :2016-06-09
  • Total pages :940
  • ISBN : 9780081001622
GET BOOK HERE

Summary : Handbook of Generation IV Nuclear Reactors presents information on the current fleet of Nuclear Power Plants (NPPs) with water-cooled reactors (Generation III and III+) (96% of 430 power reactors in the world) that have relatively low thermal efficiencies (within the range of 32 36%) compared to those of modern advanced thermal power plants (combined cycle gas-fired power plants – up to 62% and supercritical pressure coal-fired power plants – up to 55%). Moreover, thermal efficiency of the current fleet of NPPs with water-cooled reactors cannot be increased significantly without completely different innovative designs, which are Generation IV reactors. Nuclear power is vital for generating electrical energy without carbon emissions. Complete with the latest research, development, and design, and written by an international team of experts, this handbook is completely dedicated to Generation IV reactors. Presents the first comprehensive handbook dedicated entirely to generation IV nuclear reactors Reviews the latest trends and developments Complete with the latest research, development, and design information in generation IV nuclear reactors Written by an international team of experts in the field

Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications
  • Author : Robert Odette,Steven Zinkle
  • Publisher :Unknown
  • Release Date :2019-08-15
  • Total pages :673
  • ISBN : 9780123973498
GET BOOK HERE

Summary : High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors’ unique personal insight from decades of frontline research, engineering and management. Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Materials Issues for Generation IV Systems

Materials Issues for Generation IV Systems
  • Author : Véronique Ghetta,Dominique Gorse,Dominique Mazière,Vassilis Pontikis
  • Publisher :Unknown
  • Release Date :2008-04-23
  • Total pages :586
  • ISBN : 9781402084225
GET BOOK HERE

Summary : Global warming, shortage of low-cost oil resources and the increasing demand for energy are currently controlling the world's economic expansion while often opposing desires for sustainable and peaceful development. In this context, atomic energy satisfactorily fulfills the criteria of low carbon gas production and high overall yield. However, in the absence of industrial fast-breeders the use of nuclear fuel is not optimal, and the production of high activity waste materials is at a maximum. These are the principal reasons for the development of a new, fourth generation of nuclear reactors, minimizing the undesirable side-effects of current nuclear energy production technology while increasing yields by increasing operation temperatures and opening the way for the industrial production of hydrogen through the decomposition of water. The construction and use of such reactors is hindered by several factors, including performance limitations of known structural materials, particularly if the life of the projected systems had to extend over the periods necessary to achieve low costs (at least 60 years). This book collects lectures and seminars presented at the homonymous NATO ASI held in autumn 2007 at the Institut d’Etudes Scientifiques in Cargèse, France. The adopted approach aims at improving and coordinating basic knowledge in materials science and engineering with specific areas of condensed matter physics, the physics of particle/matter interaction and of radiation damage. It is our belief that this methodology is crucially conditioning the development and the industrial production of new structural materials capable of coping with the requirements of these future reactors.

Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications
  • Author : Robert Odette,Steven Zinkle
  • Publisher :Unknown
  • Release Date :2019-08-15
  • Total pages :673
  • ISBN : 9780123973498
GET BOOK HERE

Summary : High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors’ unique personal insight from decades of frontline research, engineering and management. Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Handbook of Generation IV Nuclear Reactors

Handbook of Generation IV Nuclear Reactors
  • Author : Igor Pioro
  • Publisher :Unknown
  • Release Date :2016-06-09
  • Total pages :940
  • ISBN : 9780081001622
GET BOOK HERE

Summary : Handbook of Generation IV Nuclear Reactors presents information on the current fleet of Nuclear Power Plants (NPPs) with water-cooled reactors (Generation III and III+) (96% of 430 power reactors in the world) that have relatively low thermal efficiencies (within the range of 32 36%) compared to those of modern advanced thermal power plants (combined cycle gas-fired power plants – up to 62% and supercritical pressure coal-fired power plants – up to 55%). Moreover, thermal efficiency of the current fleet of NPPs with water-cooled reactors cannot be increased significantly without completely different innovative designs, which are Generation IV reactors. Nuclear power is vital for generating electrical energy without carbon emissions. Complete with the latest research, development, and design, and written by an international team of experts, this handbook is completely dedicated to Generation IV reactors. Presents the first comprehensive handbook dedicated entirely to generation IV nuclear reactors Reviews the latest trends and developments Complete with the latest research, development, and design information in generation IV nuclear reactors Written by an international team of experts in the field

Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants

Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants
  • Author : Bahman Zohuri
  • Publisher :Unknown
  • Release Date :2015-03-14
  • Total pages :359
  • ISBN : 9783319155609
GET BOOK HERE

Summary : Introduces the concept of combined cycles for next generation nuclear power plants, explaining how recent advances in gas turbines have made these systems increasingly desirable for efficiency gains and cost-of-ownership reduction. Promulgates modelling and analysis techniques to identify opportunities for increased thermodynamic efficiency and decreased water usage over current Light Water Reactor (LWR) systems. Examines all power conversion aspects, from the fluid exiting the reactor to energy releases into the environment, with special focus on heat exchangers and turbo-machinery. Provides examples of small projects to facilitate nuanced understanding of the theories and implementation of combined-cycle nuclear plants. This book explores combined cycle driven efficiency of new nuclear power plants and describes how to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The included studies are intended to identify paths for future work on next generation nuclear power plants (GEN-IV), leveraging advances in natural-gas-fired turbines that enable coupling salt-cooled, helium-cooled, and sodium-cooled reactors to a Nuclear Air-Brayton Combined Cycle (NACC). These reactors provide the option of operating base-load nuclear plants with variable electricity output to the grid using natural gas or stored heat to produce peak power. The author describes overall system architecture, components and detailed modelling results of Brayton-Rankine Combined Cycle power conversion systems and Recuperated Brayton Cycle systems, since they offer the highest overall energy conversion efficiencies. With ever-higher temperatures predicted in GEN-IV plants, this book’s investigation of potential avenues for thermodynamic efficiency gains will be of great interest to nuclear engineers and researchers, as well as power plant operators and students.

Nuclear Data Needs for Generation IV Nuclear Energy Systems

Nuclear Data Needs for Generation IV Nuclear Energy Systems
  • Author : P. Rullhusen
  • Publisher :Unknown
  • Release Date :2006
  • Total pages :286
  • ISBN : 9789812773401
GET BOOK HERE

Summary : This volume presents recent progress in the improvement of the nuclear database needed for the development of Generation IV nuclear energy systems. The Generation IV International Forum (GIF) identified six advanced concepts for sustainable nuclear energy production at competitive prices and with advanced safety, with special attention to nuclear non-proliferation and physical protection issues, minimization of long-lived radiotoxic waste, and optimum natural resource utilization System groups have been established for studying these concepts in detail, and nuclear data are an inherent part of these studies. This book reviews the work recently performed for the development of these systems. The contributions include an up-to-date overview of recent achievements in sensitivity analysis, model calculations, estimates of uncertainties, and the present status of nuclear databases with regard to their applications to Generation IV systems. In the workshop, special attention was given to the identification of nuclear data needs from sensitivity analysis of benchmark experiments and the treatment of uncertainties. The proceedings contain overviews of several experimental program and recent results of interest for the development of Generation IV systems. Contents: Nuclear Data Needs for Generation IV Systems: Future of Nuclear Energy and the Role of Nuclear Data (P Finck); Nuclear Data Needs for Generation IV Nuclear Energy Systems OCo Summary of US Workshop (T A Taiwo & H S Khalil); Innovative Fuel Types for Minor Actinides Transmutation (D Haas et al.); Benchmarks, Sensitivity Calculations, Uncertainties: Sensitivity of Advanced Reactor and Fuel Cycle Performance Parameters to Nuclear Data Uncertainties (G Aliberti et al.); Computer Model of an Error Propagation Through Micro-Campaign of Fast Neutron Gas Cooled Nuclear Reactor (E Ivanov); Generating Covariance Data with Nuclear Models (A J Koning); Experiments: INL Capabilities for Nuclear Data Measurements Using the Argonne Intense Pulsed Neutron Source Facility (J D Cole et al.); Cross-Section Measurements in the Fast Neutron Energy Range (A Plompen); Recent Measurements of Neutron Capture Cross Sections for Minor Actinides by an JNC and Kyoto University Group (H Harada et al.); Evaluated Data Libraries: Nuclear Data Evaluation for Generation IV (G Nogu re et al.); Improved Evaluations of Neutron-Induced Reactions on Americium Isotopes (P Talou et al.); and several other important contributions. Readership: Graduate students and nuclear physicists interested in experimental nuclear physics, nuclear reactions modeling, and reactor physics, especially the development of Generation IV reactors."

Nuclear Corrosion Science and Engineering

Nuclear Corrosion Science and Engineering
  • Author : Damien FERON
  • Publisher :Unknown
  • Release Date :2012-02-21
  • Total pages :1072
  • ISBN : 9780857095343
GET BOOK HERE

Summary : Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities. Initial sections introduce the complex field of nuclear corrosion science, with detailed chapters on the different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them. This is complemented by reviews of monitoring and control methodologies, as well as modelling and lifetime prediction approaches. Given that corrosion is an applied science, the final sections review corrosion issues across the range of current and next-generation nuclear reactors, and across such nuclear applications as fuel reprocessing facilities, radioactive waste storage and geological disposal systems. With its distinguished editor and international team of expert contributors, Nuclear corrosion science and engineering is an invaluable reference for nuclear metallurgists, materials scientists and engineers, as well as nuclear facility operators, regulators and consultants, and researchers and academics in this field. Comprehensively reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities Chapters assess different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them Considers monitoring and control methodologies, as well as modelling and lifetime prediction approaches

Comprehensive Nuclear Materials

Comprehensive Nuclear Materials
  • Author : Todd R Allen,Roger E Stoller,Shinsuke Yamanaka
  • Publisher :Unknown
  • Release Date :2011-05-12
  • Total pages :3560
  • ISBN : 9780080560335
GET BOOK HERE

Summary : Comprehensive Nuclear Materials discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials. The work addresses the full panorama of contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environment Fully integrated with F-elements.net, a proprietary database containing useful cross-referenced property data on the lanthanides and actinides Details contemporary developments in numerical simulation, modelling, experimentation, and computational analysis, for effective implementation in labs and plants

Structural Materials for Innovative Nuclear Systems (SMINS)

Structural Materials for Innovative Nuclear Systems (SMINS)
  • Author : Anonim
  • Publisher :Unknown
  • Release Date :2008
  • Total pages :542
  • ISBN : 9264048065
GET BOOK HERE

Summary : These proceedings include papers and poster session materials from a workshop representing the state of the art in structural materials for innovative nuclear systems.

Nuclear Thermal Hydraulic and Two-Phase Flow

Nuclear Thermal Hydraulic and Two-Phase Flow
  • Author : Jun Wang,Kaiyi Shi,Zhaoming Meng,Shripad T. Revankar
  • Publisher :Unknown
  • Release Date :2018-10-11
  • Total pages :229
  • ISBN : 9782889456123
GET BOOK HERE

Summary : Nuclear energy is one of the most important clear energy and contributes more than 10% electric power to human society in the past decades of years. The nuclear thermal hydraulic and two-phase flow is one of the basic branches of nuclear technology and provides structure design and safety analysis to the nuclear power reactors. In the new century, the basic theoretical research of thermal hydraulic and two-phase flow, and innovative design for the next generation nuclear power plants (especially for the small modular reactor and molten salt reactor), along with other nuclear branches, constantly support the development of nuclear technology.

Materials for Nuclear Plants

Materials for Nuclear Plants
  • Author : Wolfgang Hoffelner
  • Publisher :Unknown
  • Release Date :2012-09-21
  • Total pages :482
  • ISBN : 9781447129141
GET BOOK HERE

Summary : The clamor for non-carbon dioxide emitting energy production has directly impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, materials modeling and advanced materials testing will be described including design code considerations and non-destructive evaluation concepts. Including models for simple system dynamic problems and knowledge of current nuclear power plants in operation, Materials for Nuclear Plants: From Safe Design to Residual Life Assessments is ideal for students studying postgraduate courses in Nuclear Engineering. Designers on courses for code development, such as ASME or ISO and nuclear authorities will also find this a useful reference.

Nuclear Energy

Nuclear Energy
  • Author : Raymond L. Murray
  • Publisher :Unknown
  • Release Date :2013-10-22
  • Total pages :462
  • ISBN : 9781483287867
GET BOOK HERE

Summary : This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, radiation, and reactors, along with a discussion of wastes and weapons. A minimum of mathematical background is required, but there is ample opportunity to learn characteristic numbers through the illustrative calculations and the exercises. An updated Solution Manual is available to the instructor. A new feature to aid the student is a set of some 50 Computer Exercises, using a diskette of personal computer programs in BASIC and spreadsheet, supplied by the author at a nominal cost. The book is of principal value as an introduction to nuclear science and technology for early college students, but can be of benefit to science teachers and lecturers, nuclear utility trainees and engineers in other fields.

Nuclear Materials Science Second Editi

Nuclear Materials Science Second Editi
  • Author : KARL. WHITTLE
  • Publisher :Unknown
  • Release Date :2020-11-05
  • Total pages :280
  • ISBN : 0750323744
GET BOOK HERE

Summary : Concerns around climate change and the drive to net-zero carbon energy have led to a nuclear renaissance in many countries and, since the publication of the first edition of this book, we have seen an increase in the amount of the world's energy produced by nuclear power and new plants under construction. The nuclear industry continues to warn of the increasing need for a highly trained workforce and men and women are needed to perform R&D activities in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here, Karl Whittle provides an overview of the intersection of nuclear engineering and materials science at a level approachable by students from materials, engineering and physics. Written as a textbook for nuclear materials or nuclear engineering courses, the text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation, the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Featuring animated figures, this extensively updated and extended edition also includes a new chapter on materials characterisation.

Residual Stresses IX

Residual Stresses IX
  • Author : M. Francois,Guillaume Montay,Benoit Panicaud,Delphine Retraint,Emmanuelle Rouhaud
  • Publisher :Unknown
  • Release Date :2014-08-11
  • Total pages :1010
  • ISBN : 9783038265368
GET BOOK HERE

Summary : Collection of selected, peer reviewed papers from the 9th European Conference on Residual Stresses, ECRS-9, July 7-10, 2014, Troyes, France. Volume is indexed by Thomson Reuters CPCI-S (WoS). The 157 papers are grouped as follows: Chapter I. Measurement Methods, I.1. Local Scale Measurements, I.2. Diffraction at Grain Scale and Multiscale Diffraction, I.3. Diffraction: Gradients and Instrumental Developments, I.4. Mechanical Relaxation Methods, I.5. Acoustics and Electromagnetics Methods, Chapter II. Manufacturing and Materials Processing, II.1. Welding, II.2. Heat Treatment and Phase Transformation, II.3. Machining and Cold Work, Chapter III. Materials and Structures, III.1. Fatigue and Fracture, III.2. Films, Coatings and Oxides, III.3. Composites and Nano/Micro Structures

Energy Materials Coordinating Committe (EMaCC): Fiscal Year 2004 Annual Technical Report

Energy Materials Coordinating Committe (EMaCC): Fiscal Year 2004 Annual Technical Report
  • Author : Anonim
  • Publisher :Unknown
  • Release Date :2021
  • Total pages :229
  • ISBN : 9781422345597
GET BOOK HERE

Summary :

Ceramics in Nuclear and Alternative Energy Applications

Ceramics in Nuclear and Alternative Energy Applications
  • Author : Sharon Marra
  • Publisher :Unknown
  • Release Date :2009-09-29
  • Total pages :190
  • ISBN : 9780470291757
GET BOOK HERE

Summary : This volume focuses on recent developments and advances of ceramics and ceramic matrix composites for use in fission and fusion reactors, nuclear fuels and alternative energy applications. With the continued increasing demands for energy, nuclear energy has experienced a renewed interest. Recent developments associated with advanced fuel cycles have resulted in new research efforts on nuclear fuel materials. The effects of radiation on the properties of ceramics and ceramic matrix composites are also addressed.

High Temperature Corrosion and Materials Chemistry 8

High Temperature Corrosion and Materials Chemistry 8
  • Author : E. Wuchina
  • Publisher :Unknown
  • Release Date :2010-02
  • Total pages :167
  • ISBN : 9781566777988
GET BOOK HERE

Summary : The papers included in this issue of ECS Transactions were originally presented in the symposium ¿High Temperature Corrosion and Materials Chemistry 8¿, held during the 216th meeting of The Electrochemical Society, in Vienna, Austria from October 4 to 9, 2009.

Design and Construction of Nuclear Power Plants

Design and Construction of Nuclear Power Plants
  • Author : Rüdiger Meiswinkel,Julian Meyer,Jürgen Schnell
  • Publisher :Unknown
  • Release Date :2013-04-10
  • Total pages :150
  • ISBN : 9783433602751
GET BOOK HERE

Summary : Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply. Building structures required for nuclear plants whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overview from approval aspects given by nuclear and construction law, with special attention to the interface between plant and construction engineering, to a building structure classification. All life cycle phases are considered, with the primary focus on execution. Accidental actions on structures, the safety concept and design and fastening systems are exposed to a particular treatment. Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since.

Ceramic Matrix Composites

Ceramic Matrix Composites
  • Author : Narottam P. Bansal,Jacques Lamon
  • Publisher :Unknown
  • Release Date :2014-10-27
  • Total pages :712
  • ISBN : 9781118832899
GET BOOK HERE

Summary : This book is a comprehensive source of information on various aspects of ceramic matrix composites (CMC). It covers ceramic and carbon fibers; the fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration and joining. Each chapter in the book is written by specialists and internationally renowned researchers in the field. This book will provide state-of-the-art information on different aspects of CMCs. The book will be directed to researchers working in industry, academia, and national laboratories with interest and professional competence on CMCs. The book will also be useful to senior year and graduate students pursuing degrees in ceramic science and engineering, materials science and engineering, aeronautical, mechanical, and civil or aerospace engineering. Presents recent advances, new approaches and discusses new issues in the field, such as foreign object damage, life predictions, multiscale modeling based on probabilistic approaches, etc. Caters to the increasing interest in the application of ceramic matrix composites (CMC) materials in areas as diverse as aerospace, transport, energy, nuclear, and environment. CMCs are considered ans enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, space structures, as well as nuclear and chemical industries. Offers detailed descriptions of ceramic and carbon fibers; fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration/joining.