Download Thin Film Solar Cells From Earth Abundant Materials Book PDF

Download full Thin Film Solar Cells From Earth Abundant Materials books PDF, EPUB, Tuebl, Textbook, Mobi or read online Thin Film Solar Cells From Earth Abundant Materials anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Thin Film Solar Cells From Earth Abundant Materials

Thin Film Solar Cells From Earth Abundant Materials
  • Author : Subba Ramaiah Kodigala
  • Publisher :Unknown
  • Release Date :2013-11-14
  • Total pages :190
  • ISBN : 9780123971821
GET BOOK HERE

Summary : The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. One of the first books exploring how to conduct research on thin film solar cells, including reducing costs Detailed instructions on conducting research

Thin Film Solar Cells Using Earth-Abundant Materials

Thin Film Solar Cells Using Earth-Abundant Materials
  • Author : Parag S. Vasekar,Tara P. Dhakal
  • Publisher :Unknown
  • Release Date :2013
  • Total pages :229
  • ISBN : 9535110039
GET BOOK HERE

Summary :

Copper Zinc Tin Sulfide-Based Thin Film Solar Cells

Copper Zinc Tin Sulfide-Based Thin Film Solar Cells
  • Author : Kentaro Ito
  • Publisher :Unknown
  • Release Date :2015-02-23
  • Total pages :440
  • ISBN : 9781118437872
GET BOOK HERE

Summary : Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground–mount and rooftop installation. The semiconducting compound (CZTS) is made up earth–abundant, low–cost and non–toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS–based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS–based solar cells have the potential to be used for large–scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.

Development of Earth-abundant Materials and Low-cost Processes for Solar Cells

Development of Earth-abundant Materials and Low-cost Processes for Solar Cells
  • Author : Chih-Liang Wang
  • Publisher :Unknown
  • Release Date :2014
  • Total pages :232
  • ISBN : OCLC:903178931
GET BOOK HERE

Summary : The goal of renewable solar energy research is to develop low-cost, high-efficiency photovoltaic technologies. However, with the growing deployment of solar cells, approaching the terawatt scale, absorber materials reliant upon rare or unfriendly elements become a crucial issue. Thus, the primary objective of this dissertation is the development of a low-cost fabrication method for (i) thin-film solar cells and (ii) dye-sensitized solar cells using earth-abundant materials. In thin-film solar cells, the kesterite Cu2ZnSnS4 with earth abundant elements is used as an absorber layer. It possesses a high absorption coefficient, direct band gap, and good long-term stability compared to the traditional CdTe and Cu(In,Ga)(S,Se)2 (CIGS) absorber layers. A facile hot-injection approach for synthesizing Cu2ZnSn(S,Se)4 nanocrystals with varied Se to (S+Se) ratio is developed to systematically investigate the role of Se in Cu2ZnSn(S,Se)4 nanocrystals and the evolution of Cu2ZnSn(S,Se)4 nanocrystals to Cu2ZnSn(S,Se)4 film during the sulfurization step to address the problems associated with its narrow compositional window and the loss of Sn during heat treatment. Additionally, the existing substrate-type device configuration for these solar cells uses a molybdenum (Mo) back contact, which suffers from serious disadvantages like the (i) presence of a Schottky barrier at the Mo/Cu2ZnSn(S,Se)4 interface and (ii) decomposition of Cu2ZnSn(S,Se)4 at the Mo interface. Accordingly, a low-cost and Mo-free superstrate-type device configuration of Au/Cu2ZnSn(S,Se)4/CdS/TiO2/ITO/glass is developed to evaluate the conversion efficiency and to avoid the occurrence of a Schottky barrier at the interface and potential decomposition pathways induced by the formation of Mo(S,Se)2. Furthermore, with the addition of ethyl cellulose, the loss of Sn associated with the conversion of CZTSe to CZTSSe during the grain growth process is mitigated, leading to an increase in the conversion efficiency compared to that of the precursor film without using ethyl cellulose. Such an improvement can provide insight into the grain growth of CZTSSe during the sulfurization process and thereby enhance the feasibility of sustainable, high efficiency CZTSSe solar devices. The excellent characteristics of dye-sensitized solar cells (DSSCs) with short energy-payback time, simple assembly, and eco-friendly features make them a potential option to utilize solar energy. Accordingly, a facile, low-cost, template-free route for TiO2 hollow submicrospheres embedded with SnO2 nanobeans is developed for use as a versatile scattering layer in DSSCs. Our designed structure simultaneously promotes dye adsorption, light harvesting, and electron transport, leading to a 28 % improvement in the conversion efficiency as compared with the film-based SnO2. In addition, a naturally-derived carbonaceous material as a Pt-free counter electrode for DSSCs is also developed for the first time: carbonized sucrose-coated eggshell membrane (CSEM). It is found that the carbonized sucrose-coated eggshell membranes consist of unique micropores of less than 2 nm, which effectively catalyze the triiodide into iodide in the light-electricity conversion process, leading to an improvement in the V [subscript oc] and a competitive efficiency as compared to that of a DSSC with a traditional Pt-based counter electrode.

Fabrication and Characterization of Low Cost Solar Cells based on Earth Abundant Materials for Sustainable Photovoltaics

Fabrication and Characterization of Low Cost Solar Cells based on Earth Abundant Materials for Sustainable Photovoltaics
  • Author : Mahmoud Abdelfatah
  • Publisher :Unknown
  • Release Date :2016-07-08
  • Total pages :130
  • ISBN : 9783736982963
GET BOOK HERE

Summary : The low cost and low temperature electrochemical deposition technique was employed to grow Cu2O thin films and ZnO:Al thin films were deposited by d.c. magnetron sputtering in order to fabricate solar cells. The potentiostatic and galvanostatic electrodeposition modes were used to deposit the Cu2O thin films. Raman spectra of thin films have shown characteristic frequencies of crystalline Cu2O. The contact between Cu2O and Au is found to be an Ohmic contact. The devices grown by a potentiostatic mode have higher efficiency than those grown by a galvanostatic mode. The optimum thickness of Cu2O thin films as an absorber layer in solar cells. was found to be around 3 µm respect to a high efficiency. Flexible and light weight solar cell was fabricated on plastic substrate.

Earth-Abundant Materials for Solar Cells

Earth-Abundant Materials for Solar Cells
  • Author : Sadao Adachi
  • Publisher :Unknown
  • Release Date :2015-10-28
  • Total pages :480
  • ISBN : 9781119052838
GET BOOK HERE

Summary : Systematically describes the physical and materials properties of copper-based quaternary chalcogenide semiconductor materials, enabling their potential for photovoltaic device applications. Intended for scientists and engineers, in particular, in the fields of multinary semiconductor physics and a variety of photovoltaic and optoelectronic devices.

Optoelectronic Modeling and Optimization of Graded-bandgap Thin-film Solar Cells

Optoelectronic Modeling and Optimization of Graded-bandgap Thin-film Solar Cells
  • Author : Faiz Ahmad
  • Publisher :Unknown
  • Release Date :2020
  • Total pages :229
  • ISBN : OCLC:1198442055
GET BOOK HERE

Summary : Crystalline-silicon (c-Si) photovoltaic solar cells are increasingly taking over the energy production sector nowadays. Even in comparison to coal-fired and nuclear plants for generation of electricity, the cost of harnessing solar energy by photovoltaic means has gone down considerably during the last decade. However, microwatt-scale generators of electricity are needed for human progress to become effectively unconstrained by economics. Large-scale adoption of thin-film solar cells is necessary for that to happen. However, Earth-abundant materials with low toxicity and high power-conversion efficiency must be used for thin-film solar cells. A series of theoretical investigations were performed to tackle the problem of materials scarcity as well as to explore potential enhancements of power-conversion efficiency in thin-film solar cells by thinning the absorber layer, grading the bandgap in the absorber layer, and modifying the back end. Three different types of thin-film solar cells were considered: CIGS, CZTSSe, and AlGaAs. The bandgap of the absorber layer was varied either sinusoidally or linearly. The thickness of the absorber layer was varied from 100 nm to 2200 nm. Back-end modifications incorporating a periodically corrugated backreflector and a back-surface passivation layer were considered as well. A coupled optoelectronic model was used along with the differential evolution algorithm to maximize the efficiency in relation to geometric and bandgap-grading parameters. Furthermore, as colored solar cells can promote large-scale adoption of rooftop solar cells, efficiency loss due to color-rejection filters was estimated. The coupled optoelectronic optimization predicted that tailored bandgap grading could significantly improve efficiency for all three considered thin-film solar cells. For CIGS solar cells with a 2200-nm-thick absorber layer, an efficiency of 27.7% was predicted with a sinusoidally graded bandgap absorber layer along with back-end modifications in comparison to 22% efficiency achieved experimentally with a homogeneous CIGS absorber layer. An efficiency of 21.7% was predicted with sinusoidal grading of a 870-nm-thick absorber CZTSSe layer in comparison to 12.6% efficiency achieved experimentally with a 2200-nm-thick homogeneous CZTSSe layer. Similarly, an efficiency of 34.5% was predicted through optoelectronic optimization of AlGaAs solar cells with a sinusoidally graded bandgap absorber layer along with back-end modifications in comparison to 27.6% efficiency achieved experimentally with a homogeneous AlGaAs absorber layer. For colored thin-film solar cells, predictions of the efficiency loss varied from 10% to 20%, depending upon the percentage of rejection of incoming solar photons. Thus, optoelectronic optimization by bandgap grading and back-end modifications is more than enough to swallow efficiency reduction by the rejection of a certain percentage of incoming solar photons. Thus, the proposed design strategies provide a way to realize more efficient thin-film solar cells for the ubiquitous harnessing of solar energy at low-wattage levels, thereby promoting widespread adoption of thin-film solar cells as local energy sources. Also, cheap, small-scale off-grid generation of electricity will provide access to energy for populations living without electricity far from central grids in less-developed and developing regions of our planet, thus equalizing opportunity and decreasing income and gender gaps.

Advanced Concepts in Photovoltaics

Advanced Concepts in Photovoltaics
  • Author : Arthur J. Nozik,Gavin Conibeer,Matthew C Beard
  • Publisher :Unknown
  • Release Date :2014-07-10
  • Total pages :608
  • ISBN : 9781849739955
GET BOOK HERE

Summary : Photovoltaic systems enable the sun’s energy to be converted directly into electricity using semiconductor solar cells. The ultimate goal of photovoltaic research and development is to reduce the cost of solar power to reach or even become lower than the cost of electricity generated from fossil and nuclear fuels. The power conversion efficiency and the cost per unit area of the phototvoltaic system are critical factors that determine the cost of photovoltaic electricity. Until recently, the power conversion efficiency of single-junction photovoltaic cells has been limited to approximately 33% - the so-called Shockley-Queisser limit. This book presents the latest developments in photovoltaics which seek to either reach or surpass the Shockley-Queisser limit, and to lower the cell cost per unit area. Progress toward this ultimate goal is presented for the three generations of photovoltaic cells: the 1st generation based on crystalline silicon semiconductors; the 2nd generation based on thin film silicon, compound semiconductors, amorphous silicon, and various mesoscopic structures; and the 3rd generation based on the unique properties of nanoscale materials, new inorganic and organic photoconversion materials, highly efficient multi-junction cells with low cost solar concentration, and novel photovoltaic processes. The extent to which photovoltaic materials and processes can meet the expectations of efficient and cost effective solar energy conversion to electricity is discussed. Written by an international team of expert contributors, and with researchers in academia, national research laboratories, and industry in mind, this book is a comprehensive guide to recent progress in photovoltaics and essential for any library or laboratory in the field.

Development of Earth-Abundant Tin(II) Sulfide Thin-Film Solar Cells by Vapor Deposition

Development of Earth-Abundant Tin(II) Sulfide Thin-Film Solar Cells by Vapor Deposition
  • Author : Prasert Sinsermsuksakul
  • Publisher :Unknown
  • Release Date :2013
  • Total pages :229
  • ISBN : OCLC:867208718
GET BOOK HERE

Summary : To sustain future civilization, the development of alternative clean-energy technologies to replace fossil fuels has become one of the most crucial and challenging problems of the last few decades. The thin film solar cell is one of the major photovoltaic technologies that is promising for renewable energy. The current commercial thin film PV technologies are based on Cu(In,Ga)Se2 and CdTe. Despite their success in reducing the module cost below $1/Wp, these absorber materials face limitations due to their use of scarce (In and Te) and toxic (Cd) elements. One promising candidate for an alternative absorber material is tin monosulfide (SnS). Composed of cheap, non-toxic and earth-abundant elemental constituents, SnS can potentially provide inexpensive PV modules to reach the global energy demand in TW levels.

Thin Film Solar Cells with Earth Abundant Elements

Thin Film Solar Cells with Earth Abundant Elements
  • Author : Yue Yu
  • Publisher :Unknown
  • Release Date :2017
  • Total pages :146
  • ISBN : OCLC:1114319908
GET BOOK HERE

Summary : The world energy consumption has increased rigorously in recent years due to the rapid economic development and the massive global population expansion. Today the world energy supply relies heavily on fossil fuels, known as non-renewable energy resources, which have limited reserves on Earth and do not form or replenish in a short period of time. Burning fossil fuels not only brings environmental pollutions but also results in carbon dioxide and other greenhouse gases, which are to blame for global warming. Therefore, to build a more sustainable and greener future, we have to develop alternative renewable energy resources. Photovoltaic (PV) cell, also commonly known as solar cell, is a very promising renewable energy technology. Here in this dissertation, we have studied two emerging PV materials with earth abundant elements, i.e. copper zinc tin sulfide (CZTS) and organic-inorganic hybrid halide perovskite. Having earth abundant elements means that the raw materials have rich reserves on Earth and the costs are relatively low. It also means that the materials have the potential capability to be produced in large scales in industry. We first explored two different deposition methods for preparing CZTS thin films. In the first method, the CZTS was fabricated by a solution based method with diethyl sulfoxide (DMSO) as the solvent and the effect of spin speed on the properties of CZTS thin films was studied. The results indicated that a higher spin speed was more favorable for attaining a more densely packed and pinhole-free film while no crystallographic differences were observed. In the second method, CZTS was fabricated using sputtered metal precursors followed by a closed-space sulfurization (CSS) technique, which had high manufacturing compatibility and could be applied in industry. After exploring different sulfurization conditions, including temperatures and time, the champion cell was obtained at 590oC for 30min, with a maximum power conversion efficiency (PCE) of 5.2%. We then explored three different organic-inorganic hybrid halide perovskite materials for solar cell applications. The first perovskite material is methylammonium tin triiodide (MASnI3, bandgap ~1.3 eV). It was fabricated by a hybrid thermal evaporation. The as-deposited MASnI3 thin films exhibit smooth surfaces, uniform coverage across the entire substrate, and strong crystallographic preferred orientation along the 100 direction. Our results demonstrate the potential capability of the hybrid evaporation method for preparing high-quality MASnI3 perovskite thin films which can be used to fabricate efficient lead (Pb)-free perovskite solar cells (PVSCs). The second perovskite material is mixed-cation (formamidinium and cesium) lead iodide (FA0.8Cs0.2PbI3). We find that one of the main factors limiting the PCEs of FA0.8Cs0.2PbI3 PVSCs could be the small grain sizes, which leads to relatively short mean carrier lifetimes. We further find that adding a small amount of lead thiocyanate additive can enlarge the grain size of FA0.8Cs0.2PbI3 perovskite thin films and significantly increase the mean carrier lifetime. As a result, the average PCE of FA0.8Cs0.2PbI3 PVSCs increases from 16.18 ± 0.50 (13.45 ± 0.78)% to 18.16 ± 0.54 (16.86 ± 0.63)% when measured under reverse (forward) voltage scans. The best-performing FA0.8Cs0.2PbI3 PVSC registers a PCE of 19.57 (18.12) % when measured under a reverse (forward) voltage scan. The third perovskite material is FA0.8Cs0.2Pb(I0.7Br0.3)3 (bandgap ~1.75 eV). We find that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of the perovskite thin films while avoiding the undesired excess lead iodide formation. As a result, the average grain size of the FA0.8Cs0.2Pb(I0.7Br0.3)3 perovskite thin films increases from 66 ± 24 nm to 1036 ± 111 nm and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. As a result, the average open-circuit voltage (Voc) of FA0.8Cs0.2Pb(I0.7Br0.3)3 PVSCs increases by 80 (70) mV and the average PCE increases from 13.44 ± 0.48 (11.75 ± 0.34)% to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap (~1.75 eV) PVSC registers a stabilized PCE of 17.18%, demonstrating its suitability for top cell applications in all-perovskite tandem solar cells.

Alternative Substrates for Sustainable and Earth-abundant Thin Film Photovoltaics

Alternative Substrates for Sustainable and Earth-abundant Thin Film Photovoltaics
  • Author : Ignacio Becerril Romero
  • Publisher :Unknown
  • Release Date :2019
  • Total pages :197
  • ISBN : OCLC:1224235834
GET BOOK HERE

Summary : "The development of sustainable energy sources with a high energy return on energy investment (EROI) that can substitute fossil fuels is a must in order to avoid the collapse of our current civilization. In this context, this work explores the feasibility of fabricating efficient Cu2ZnSn(Sx,Se1-x)4 (kesterite) solar cells on three strategic substrates: polyimide, ceramic and SnO2:F-coated soda-lime glass (SLG/FTO). These substrates present several advantages with respect to the standard SLG/Mo. Polyimide is compatible with roll-to-toll production processes and easily integrable in many applications thanks to its light weight and flexibility, ceramics have a direct application in building-integrated photovoltaics as solar tiles and the transparency of SLG/FTO enables advanced photovoltaic concepts like bifacial and tandem solar cells as well as the fabrication of semi-transparent devices. Their combination with a sustainable thin film photovoltaic technology based on Earth-abundant materials like kesterites has the potential of decreasing the energy fabrication cost and, thus, of increasing the EROI of photovoltaics through: 1) high throughput production, 2) integration and 3) advanced applications and functionality. However, these substrates also present several drawbacks. Alkalis, especially Na, are fundamental to achieve high efficiency devices but polyimide and ceramics are alkali-free materials. Likewise, FTO acts as a barrier for alkalis. In addition, polyimide presents a low thermal robustness that limits process temperatures below 500oC, ceramics are very rough and possess detrimental impurities and the use of FTO as back contact leads to a non-optimum p-kesterite/n-FTO interface. This work focuses on the implementation of specific strategies to adapt the kesterite solar cell fabrication process to the characteristics of the different substrates. A combination of alkaline doping and low-temperature annealings is studied for the fabrication of Cu2ZnSnSe4 solar cells on polyimide. While doping with NaF and KF is found to lead to critical improvements, working at low temperature is linked to the formation of SnSe2. This phase decreases the open-circuit voltage of the devices and is the main factor controlling their performance. Further experimentation leads to a 4.9% efficiency record device by combining NaF and Ge doping and a 480oC annealing. In the case of ceramic, vitreous enamels with controlled amounts of Na2O in their composition are used as surface smoothers, Na sources and impurity barriers, simultaneously. However, large amounts of Na2O in the enamel composition result in high densities of surface defects: undulations, pinholes and cracks. While undulations and pinholes are rather benign, cracks strongly deteriorate the back contact. In addition, the annealing time needs to be controlled to avoid the formation of SnSe2. Besides these issues, enamelled ceramic substrates are observed to behave similarly to SLG yielding a record Cu2ZnSnSe4 device with a 7.5% efficiency. Regarding SLG/FTO, the addition of transition metal oxides (TMOs) and/or Mo:Na nanolayers is studied as an approach to improve the back interface of the devices. Mo:Na is found to alleviate shunting and recombination issues and to protect FTO from degradation during annealing which leads to highly improved devices, especially for Cu2ZnSnS4. On the other hand, TMOs introduce a severe current blockage. However, the combination of the TiO2 and V2O5 with Mo:Na is observed to boost the beneficial effects of the latter in Cu2ZnSnSe4 and Cu2ZnSn(S,Se)4 devices. Although these multi-layered back interfaces exhibit a complex behaviour, this approach results in record efficiencies of 6.2%, 6.1% and 7.9% for Cu2ZnSnSe4, Cu2ZnSnS4 and Cu2ZnSn(S,Se)4 devices, respectively. These results represent the highest efficiencies ever reported for kesterite solar cells fabricated on polyimide, ceramic and transparent substrates and give proof of their large potential for sustainable kesterite-based photovoltaics." -- TDX.

Improved Thin Film Solar Cells Made by Vapor Deposition of Earth-Abundant Tin(II) Sulfide

Improved Thin Film Solar Cells Made by Vapor Deposition of Earth-Abundant Tin(II) Sulfide
  • Author : Leizhi Sun
  • Publisher :Unknown
  • Release Date :2014
  • Total pages :229
  • ISBN : OCLC:882196877
GET BOOK HERE

Summary : Tin(II) sulfide (SnS) is an earth-abundant, inexpensive, and non-toxic absorber material for thin film solar cells. SnS films are deposited by atomic layer deposition (ALD) through the reaction of a tin precursor, bis(N,N'-diisopropylacetamidinato)tin(II), and hydrogen sulfide. The SnS films demonstrate excellent surface morphology, crystal structure, phase purity, stoichiometry, elemental purity, and optical and electrical properties.

Electronic Characterisation of Earth‐Abundant Sulphides for Solar Photovoltaics

Electronic Characterisation of Earth‐Abundant Sulphides for Solar Photovoltaics
  • Author : Thomas James Whittles
  • Publisher :Unknown
  • Release Date :2018-07-31
  • Total pages :362
  • ISBN : 9783319916651
GET BOOK HERE

Summary : This book examines the electronic structure of earth-abundant and environmentally friendly materials for use as absorber layers within photovoltaic cells. The corroboration between high-quality photoemission measurements and density of states calculations yields valuable insights into why these materials have demonstrated poor device efficiencies in the vast literature cited. The book shows how the materials’ underlying electronic structures affect their properties, and how the band positions make them unsuitable for use with established solar cell technologies. After explaining these poor efficiencies, the book offers alternative window layer materials to improve the use of these absorbers. The power of photoemission and interpretation of the data in terms of factors generally overlooked in the literature, such as the materials’ oxidation and phase impurity, is demonstrated. Representing a unique reference guide, the book will be of considerable interest and value to members of the photoemission community engaged in solar cell research, and to a wider materials science audience as well.

Sputtering Materials for VLSI and Thin Film Devices

Sputtering Materials for VLSI and Thin Film Devices
  • Author : Jaydeep Sarkar
  • Publisher :Unknown
  • Release Date :2010-12-13
  • Total pages :608
  • ISBN : 9780815519874
GET BOOK HERE

Summary : An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall productivity of various processes. Two unique chapters of this book deal with productivity and troubleshooting issues. The content of the book has been divided into two sections: (a) the first section (Chapter 1 to Chapter 3) has been prepared for the readers from a range of disciplines (e.g. electrical, chemical, chemistry, physics) trying to get an insight into use of sputtered films in various devices (e.g. semiconductor, display, photovoltaic, data storage), basic of sputtering and performance of sputtering target in relation to productivity, and (b) the second section (Chapter 4 to Chapter 8) has been prepared for readers who already have background knowledge of sputter deposition of thin films, materials science principles and interested in the details of sputtering target manufacturing methods, sputtering behavior and thin film properties specific to semiconductor, liquid crystal display, photovoltaic and magnetic data storage applications. In Chapters 5 to 8, a general structure has been used, i.e. a description of the applications of sputtered thin films, sputtering target manufacturing methods (including flow charts), sputtering behavior of targets (e.g. current - voltage relationship, deposition rate) and thin film properties (e.g. microstructure, stresses, electrical properties, in-film particles). While discussing these topics, attempts have been made to include examples from the actual commercial processes to highlight the increased complexity of the commercial processes with the growth of advanced technologies. In addition to personnel working in industry setting, university researchers with advanced knowledge of sputtering would also find discussion of such topics (e.g. attributes of target design, chamber design, target microstructure, sputter surface characteristics, various troubleshooting issues) useful. . Unique coverage of sputtering target manufacturing methods in the light of semiconductor, displays, data storage and photovoltaic industry requirements Practical information on technology trends, role of sputtering and major OEMs Discussion on properties of a wide variety of thin films which include silicides, conductors, diffusion barriers, transparent conducting oxides, magnetic films etc. Practical case-studies on target performance and troubleshooting Essential technological information for students, engineers and scientists working in the semiconductor, display, data storage and photovoltaic industry

Terawatt Solar Photovoltaics

Terawatt Solar Photovoltaics
  • Author : Meng Tao
  • Publisher :Unknown
  • Release Date :2014-04-07
  • Total pages :112
  • ISBN : 9781447156437
GET BOOK HERE

Summary : Solar energy will undoubtedly become a main source of energy in our life by the end of this century, but how big of a role will photovoltaics play in this new energy infrastructure? Besides cost and efficiency, there are other barriers for current solar cell technologies to become a noticeable source of energy in the future. Availability of raw materials, energy input, storage of solar electricity, and recycling of dead modules can all prevent or hinder a tangible impact by solar photovoltaics. This book is intended for readers with minimal technical background and aims to explore not only the fundamentals but also major issues in large-scale deployment of solar photovoltaics. Thought-provoking ideas to overcoming some of the barriers are discussed.

Coatings and Thin-Film Technologies

Coatings and Thin-Film Technologies
  • Author : Jaime Andres Perez Taborda,Alba Avila
  • Publisher :Unknown
  • Release Date :2019-01-03
  • Total pages :286
  • ISBN : 9781789848700
GET BOOK HERE

Summary : The field of coatings and thin-film technologies is rapidly advancing to keep up with new uses for semiconductor, optical, tribological, thermoelectric, solar, security, and smart sensing applications, among others. In this sense, thin-film coatings and structures are increasingly sophisticated with more specific properties, new geometries, large areas, the use of heterogeneous materials and flexible and rigid coating substrates to produce thin-film structures with improved performance and properties in response to new challenges that the industry presents. This book aims to provide the reader with a complete overview of the current state of applications and developments in thin-film technology, discussing applications, health and safety in thin films, and presenting reviews and experimental results of recognized experts in the area of coatings and thin-film technologies.

New Earth Abundant Materials for Thin Film Photovoltaics and RF Antennas on Flexible Substrates

New Earth Abundant Materials for Thin Film Photovoltaics and RF Antennas on Flexible Substrates
  • Author : Anonim
  • Publisher :Unknown
  • Release Date :2015
  • Total pages :312
  • ISBN : 1339134950
GET BOOK HERE

Summary :

Nanoscale Surface and Interface Characterization of Earth-Abundant Thin-Film Solar Cells

Nanoscale Surface and Interface Characterization of Earth-Abundant Thin-Film Solar Cells
  • Author : Kasra Sardashti
  • Publisher :Unknown
  • Release Date :2016
  • Total pages :122
  • ISBN : OCLC:967784543
GET BOOK HERE

Summary : Thin-film kesterites have been explored as promising absorbers in future photovoltaic devices due to their earth-abundant and non-toxic constituents, which do not impose any future production limitations. However, the current record conversion efficiency of polycrystalline kesterite devices is 12.6%--i.e., at least 2.4% short of the efficiency threshold needed to make this material competitive with chalcogenide-based thin film technologies. This shortage in conversion efficiency has been in part ascribed to the large extent of carrier recombination by defects at the grain boundaries and contact/absorber interfaces. In this work, methods nanoscale compositional and electrical characterization of grain boundaries and contact/absorber interfaces in kesterite solar cells have been developed, using a unique combination of advanced nano-characterization tools including Auger Nanoprobe Microscopy (NanoAuger), Kelvin Probe Force Microscopy (KPFM) and Cryogenic Focused Ion Beam (Cryo-FIB). NanoAuger and KPFM measurements on high-performance CZTSSe thin film PV devices revealed that the presence of SnOx at the grain boundaries is essential to the high VOC. This passivation layer needs to be formed by an air anneal process performed after the film deposition. In contrast to the oxide at the grain boundary, oxide layer on the top surfaces of the grains has been found to be (Sn,Zn),O. A new cross-sectioning method via grazing angle of incidence Cryo-FIB milling, has been developed where smooth cross-sections with at least 10x scale expansion have been prepared. These surfaces were characterized for CIGSe monitor films confirming the presence of MoSe2 interlayer acting as a proper hole contact on the back surface.

Alternative Processing Methods and Materials for Thin Film Chalcogenide Solar Cells

Alternative Processing Methods and Materials for Thin Film Chalcogenide Solar Cells
  • Author : Benjamin D. Weil
  • Publisher :Unknown
  • Release Date :2013
  • Total pages :229
  • ISBN : OCLC:830513688
GET BOOK HERE

Summary : CIGS is currently the highest efficiency chalcogenide absorber, with a record cell efficiency of 20.3%. One of the main challenges of CIGS manufacturing is reducing costs and scaling up manufacturing. The use of toxic elements (Se, Te, Cd) and rare earth elements (In, Te) further complicates the materials processing. The development of non-toxic, earth abundant materials to replace these technologies is underway. Furthermore, there is a need to develop scalable and high-throughput manufacturing techniques that could reduce costs and improve manufacturing of chalcogenide solar cells. Solution-based deposition techniques are widely considered to be a route to low-cost, high-throughput photovoltaic device fabrication. Nanoparticle based inks are one means of achieving low-cost and high-throughput solution-processed devices. I study the properties of CuInS2 nanoparticles and their application to solar cell fabrication. I also establish a methodology for a highly scalable deposition process and report the synthesis of an air-stable, vulcanized ink from commercially available precursors. Using this air-stable solution process, solar cells are made with an absorber layer that is flat, contaminant-free, and composed of large-grained CuInS2. I demonstrate an initial power efficiency of 2.15%. To address the challenge of reducing elemental toxicity and the use of rare elements in chalcogenide solar cells, I will discuss some alternative absorbers that don't contain Indium, Cadmium, Tellurium, or Selenium. I demonstrate a 2.2% Cu2SnS3/CdS solar cell using rapid thermal processing and address the challenges facing this material to improve efficiency.

Development of Cu2ZnSnSe4 Based Thin Film Solar Cells by PVD and Chemical Based Processes

Development of Cu2ZnSnSe4 Based Thin Film Solar Cells by PVD and Chemical Based Processes
  • Author : Markus Neuschitzer
  • Publisher :Unknown
  • Release Date :2016
  • Total pages :127
  • ISBN : OCLC:986707610
GET BOOK HERE

Summary : Nowadays mono- and multicrystalline silicon have the highest market share of all PV technologies but thin film solar cells based on CdTe or Cu(In, Ga)Se2 (CIGS) absorbers recently show promising high power conversion efficiency values and due to their short energy payback time, minimal use of high purity material and low cost, they attract more and more attention. However, one concern of thin film PV based on CdTe or CIGS is the use of scare elements like tellurium or indium and gallium which could become a bottleneck if the technology wants to scale up to the terawatt level. Therefore, there is a high interest to replace these scare elements by more abundant ones and find suitable earth abundant photovoltaic absorbers. Cu2ZnSnSe4 (CZTSe) or Cu2ZnSnS4 (CZTS) and its sulphur-selenide solid solution are promising candidates to replace CIGS as absorber material due to its composition of more earth abundant elements. In literature CZTSe and CZTS are referred to as kesterite due to its crystal structure. However, there is still a large gap between power conversion efficiencies of solar cells based on kesterite absorber material and more established thin film solar cells, thus intensive research is still necessary to close this gap. The main goal of this thesis was to develop and optimize heterostructure solar cells based on Cu2ZnSnSe4 absorbers, by cost effective physical vapour deposition (PVD) and chemical based processes. Special focus is put on an improved understanding of the influence of the surface properties of kesterite absorbers on device performance and furthermore to optimize the front interface, i.e. buffer layer as well as the kesterite absorber layer itself. A detailed study investigating the influence of the surface chemistry on device performance is presented. After a chemical etching to remove unwanted ZnSe secondary phases formed during CZTSe absorber synthesis a low temperature post deposition annealing at 200ðC of the full solar cell is necessary to improve device efficiencies from below 3% to over 8%. X-ray photoelectron spectroscopy (XPS) surface analysis showed that this post deposition annealing promotes the diffusion of Zn towards the surface and Cu towards the bulk resulting in a Zn enriched and Cu depleted surface region, which is crucial for high device performance. Additionally experimental surface treatments confirm the necessity of a Cu-poor and Zn-rich surface and the reason for this beneficial surface composition are discussed in detail. Furthermore, the CdS buffer layer which is typically used in kesterite based heterostructures solar cells was optimized and allowed improvements in device performance of 1% absolute. This optimization was further extended to Cd-free ZnS(O, OH) buffer layer. Efficiencies close to that of CdS reference solar cells could be achieved using optimized ZnS(O, OH) buffer layer. Additionally to the front interface optimization, a Ge assisted crystallization process for nanocrystalline CZTSe precursors was developed which largely increase grain growth and boost open circuit voltages (Voc) to promising high values due to the elimination of deep defects. Since the low Voc values is identified of one of the main bottlenecks of kesterite technology, the improvements achieved are highly promising and give important insight for further possible optimizations.

Copper Zinc Tin Sulfide Thin Films for Photovoltaics

Copper Zinc Tin Sulfide Thin Films for Photovoltaics
  • Author : Jonathan J. Scragg
  • Publisher :Unknown
  • Release Date :2011-09-01
  • Total pages :204
  • ISBN : 3642229190
GET BOOK HERE

Summary : Jonathan Scragg documents his work on a very promising material suitable for use in solar cells. Copper Zinc Tin Sulfide (CZTS) is a low cost, earth-abundant material suitable for large scale deployment in photovoltaics. Jonathan pioneered and optimized a low cost route to this material involving electroplating of the three metals concerned, followed by rapid thermal processing (RTP) in sulfur vapour. His beautifully detailed RTP studies – combined with techniques such as XRD, EDX and Raman – reveal the complex relationships between composition, processing and photovoltaic performance. This exceptional thesis contributes to the development of clean, sustainable and alternative sources of energy