Download Wearable Bioelectronics Book PDF

Download full Wearable Bioelectronics books PDF, EPUB, Tuebl, Textbook, Mobi or read online Wearable Bioelectronics anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Wearable Bioelectronics

Wearable Bioelectronics
  • Author : Anthony P.F. Turner,Alberto Salleo,Onur Parlak
  • Publisher :Unknown
  • Release Date :2019-11-26
  • Total pages :238
  • ISBN : 9780081024089
GET BOOK HERE

Summary : Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications. Includes comprehensive and systematic coverage of the most exciting and promising bioelectronics, processes for their fabrication, and their applications in healthcare Reviews innovative applications, such as self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors and electronic skin Examines and discusses the future of wearable bioelectronics Addresses the wearable electronics market as a development of the healthcare industry

Stretchable Bioelectronics for Medical Devices and Systems

Stretchable Bioelectronics for Medical Devices and Systems
  • Author : John A. Rogers,Roozbeh Ghaffari,Dae-Hyeong Kim
  • Publisher :Unknown
  • Release Date :2016-03-31
  • Total pages :314
  • ISBN : 9783319286945
GET BOOK HERE

Summary : This book highlights recent advances in soft and stretchable biointegrated electronics. A renowned group of authors address key ideas in the materials, processes, mechanics, and devices of soft and stretchable electronics; the wearable electronics systems; and bioinspired and implantable biomedical electronics. Among the topics discussed are liquid metals, stretchable and flexible energy sources, skin-like devices, in vitro neural recording, and more. Special focus is given to recent advances in extremely soft and stretchable bio-inspired electronics with real-world clinical studies that validate the technology. Foundational theoretical and experimental aspects are also covered in relation to the design and application of these biointegrated electronics systems. This is an ideal book for researchers, engineers, and industry professionals involved in developing healthcare devices, medical tools and related instruments relevant to various clinical practices.

Stretchable Bioelectronics for Medical Devices and Systems

Stretchable Bioelectronics for Medical Devices and Systems
  • Author : John A. Rogers,Roozbeh Ghaffari,Dae-Hyeong Kim
  • Publisher :Unknown
  • Release Date :2016-03-31
  • Total pages :314
  • ISBN : 9783319286945
GET BOOK HERE

Summary : This book highlights recent advances in soft and stretchable biointegrated electronics. A renowned group of authors address key ideas in the materials, processes, mechanics, and devices of soft and stretchable electronics; the wearable electronics systems; and bioinspired and implantable biomedical electronics. Among the topics discussed are liquid metals, stretchable and flexible energy sources, skin-like devices, in vitro neural recording, and more. Special focus is given to recent advances in extremely soft and stretchable bio-inspired electronics with real-world clinical studies that validate the technology. Foundational theoretical and experimental aspects are also covered in relation to the design and application of these biointegrated electronics systems. This is an ideal book for researchers, engineers, and industry professionals involved in developing healthcare devices, medical tools and related instruments relevant to various clinical practices.

Wearable Devices

Wearable Devices
  • Author : Noushin Nasiri
  • Publisher :Unknown
  • Release Date :2019-12-04
  • Total pages :144
  • ISBN : 9781789844962
GET BOOK HERE

Summary : Wearable technologies are equipped with microchips and sensors capable of tracking and wirelessly communicating information in real time. With innovations on the horizon, the future of wearable devices will go beyond answering calls or counting our steps to providing us with sophisticated wearable gadgets capable of addressing fundamental and technological challenges. This book investigates the development of wearable technologies across a range of applications from educational assessment to health, biomedical sensing, and energy harvesting. Furthermore, it discusses some key innovations in micro/nano fabrication of these technologies, their basic working mechanisms, and the challenges facing their progress.

Tailoring Conducting Polymer Interface for Sensing and Biosensing

Tailoring Conducting Polymer Interface for Sensing and Biosensing
  • Author : Lingyin Meng
  • Publisher :Unknown
  • Release Date :2020-09-17
  • Total pages :82
  • ISBN : 9789179298005
GET BOOK HERE

Summary : The routine measurement of signi?cant physiological and biochemical parameters has become increasingly important for health monitoring especially in the cases of elderly people, infants, patients with chronic diseases, athletes and soldiers etc. Monitoring is used to assess both physical fitness level and for disease diagnosis and treatment. Considerable attention has been paid to electrochemical sensors and biosensors as point-of-care diagnostic devices for healthcare management because of their fast response, low-cost, high specificity and ease of operation. The analytical performance of such devices is significantly driven by the high-quality sensing interface, involving signal transduction at the transducer interface and efficient coupling of biomolecules at the transducer bio-interface for specific analyte recognition. The discovery of functional and structured materials, such as metallic and carbon nanomaterials (e.g. gold and graphene), has facilitated the construction of high-performance transducer interfaces which benefit from their unique physicochemical properties. Further exploration of advanced materials remains highly attractive to achieve well-designed and tailored interfaces for electrochemical sensing and biosensing driven by the emerging needs and demands of the “Internet of Things” and wearable sensors. Conducting polymers (CPs) are emerging functional polymers with extraordinary redox reversibility, electronic/ionic conductivity and mechanical properties, and show considerable potential as a transducer material in sensing and biosensing. While the intrinsic electrocatalytic property of the CPs is limited, especially for the bulk polymer, tailoring of CPs with controlled structure and efficient dopants could improve the electrochemical performance of a transducer interface by delivering a larger surface area and enhanced electrocatalytic property. In addition, the rich synthetic chemistry of CPs endows them with versatile functional groups to modulate the interfacial properties of the polymer for effective biomolecule coupling, thus bridging organic electronics and bioelectrochemistry. Moreover, the soft-material characteristics of CPs enable their use for the development of flexible and wearable sensing platforms which are inexpensive and light-weight, compared to conventional rigid materials, such as carbons, metals and semiconductors. This thesis focuses on the exploration of CPs for electrochemical sensing and biosensing with improved sensitivity, selectivity and stability by tailoring CP interfaces at different levels, including the CP-based transduction interface, CP-based bio-interface and CP-based device interface. First, we demonstrate different strategies for tailoring the physicochemical properties of poly (3,4-ethylenedioxythiophene) (PEDOT) beyond its intrinsic properties, via charge effects, structural effects and by the use of hybrid materials, as a CP-based transduction interface to improve sensing performance of various analytes. 1) A positively-charged PEDOT interface, and a negatively-charged carboxylic-acid-functionalised PEDOT (PEDOT:COOH) interface were developed to modulate the electrode kinetics for oppositely-charged analytes, e.g. negatively-charged nicotinamide adenine dinucleotide (NADH) and positively-charged dopamine (DA), respectively. These interfaces displayed high sensitivity and wide linear range towards the analytes due to the electrostatic attraction effect. 2) Various structured PEDOT including porous microspheres and nanofibres were synthesised via hard-template and soft-template methods, respectively, and were employed as building blocks for a hierarchical PEDOT and 3D nanofibrous PEDOT transduction interface, that facilitated signal transduction for NADH. 3) A PEDOT hybrid material interface was developed via using a novel bi-functional graphene oxide derivative with high reduction degree and negatively-charged sulphonate terminal functionality (S-RGO) as dopant to create PEDOT:S-RGO which delivered an enhanced electrochemical performance for various analytes. Based on the established CP-based transduction interface, biomolecules (e.g. enzymes) could be coupled to the CP surface to create CP-based bio-interfaces for biosensing. The immobilisation of enzyme was realised via either covalent bonding to a PEDOT derivative bearing a -COOH group (PEDOT-COOH) through EDC/NHS chemistry, or by physical absorption into the 3D porous PEDOT structure. The CP-based bio-interfaces were used to demonstrate the stable immobilisation of two different types of enzymes, i.e. lactate dehydrogenase and lactate oxidase, achieving the biosensing of analytes by relay bioelectrochemical signal transduction. Together, CP was employed as the CP-based device interface for the fabrication of a flexible and wearable biosensing device. A 3D honeycomb-structured graphene network was generated in-situ on a flexible polyimide surface by mask-free patterning using laser irradiation. The substrate was then reinforced with PEDOT as a polymeric binder to stabilise the 3D porous network by adhesion and binding, thus minimising the delamination of the biosensing interface under deformation and enhancing the mechanical behaviours for use in flexible and wearable devices. The subsequent nanoscale-coating of Prussian blue and immobilisation of enzyme into the 3D porous network provided a flexible platform for wearable electrochemical biosensors to detect lactate in sweat. Rutinmässig övervakning av hälsorelaterade fysiologiska och biokemiska parametrar har blivit allt viktigare för ett stort antal människor bland annat seniorer, spädbarn, patienter med kroniska sjukdomar, idrottare, soldater och med flera, på både en fysisk nivå för förebyggande av sjukdomar samt på en medicinsk nivå för diagnos och behandling av sjukdomar. Stor uppmärksamhet har lagts på utveckling av elektrokemiska sensorer och biosensorer som point-of-care (PoC) diagnostiska enheter for rutinmässig sjukvårdsledning genom deras snabba svar, låga kostnad, höga specificitet och enkla drift. Deras analytiska funktioner drivs av avkänningsgranssnittet vilket involverar signaltransduktion vid transducer-gränssnittet och effektiv koppling av biomolekyler till transducer-biogränssnittet för specifik analytigenkänning. Upptäckten av konventionella funktionella och strukturerade material, t.ex. metalliska nanopartiklar, kolnanorör och grafen, har underlättat konstruktionen av transducergränssnitt med hög prestanda på grund av deras unika fysiokemiska egenskaper. Ytterligare forskning av avancerade material ar önskvärt for att uppnå ett väldesignat och skräddarsytt gränsnitt for elektrokemisk avkänning och biosensering for Internet of Things och klädd sensorer. Ledande polymerer (LP) ar en typ av nya funktionella polymerer med extraordinär redoxomvändbarhet, elektronisk/jonisk ledningsförmåga och mekaniska egenskaper, som uppvisar betydande potential som ett givarmaterial vid avkänning och biosensering. Medan de inneboende elektrokatalytiska egenskaperna i LP:er är begränsade, speciellt for den skrymmande polymeren, kan skräddarsydda LP:er med kontrollerad struktur och effektiva dopmedel förbättra den elektrokemiska prestandan hos ett givargränssnitt med större ytarea och förbättrade elektrokatalytiska egenskaper. Dessutom ger den syntetiska kemin LP:er mångsidiga funktionella grupper för att modulera gränssnittsegenskaperna för LP:er för att förbättra selektivitet for analytdetektering, såväl som för effektiv biomolekylkoppling som ett biogränssnitt som överbryggar den organiska elektroniken och det biologiska system som stöds av de LP:s organkemiska natur. Dessutom möjliggör de mjuka materialegenskaperna för LP:er för användning i utveckling av en flexibla och bärbara avkänningsplattformar med låg kostnad och lätt vikt, jämfört med konventionella styva material, såsom metaller och halvledare. Denna avhandling fokuserar på utforskning av LP:er för elektrokemisk avkänning och biosensering med förbättrad känslighet, selektivitet och stabilitet genom att skräddarsy LP:s gränssnitt i olika nivåer, inklusive LP-baserat transduktionsgränssnitt, LP-baserat bio-gränssnitt och LP-baserat enhetsgränssnitt. Först demonstrerar vi olika strategier for att skräddarsy fysikalisk-kemiska egenskaper hos poly (3,4-etylendioxytiofen) (PEDOT) som ett LP-baserat transduktionsgränssnitt för avkänning via laddningseffekter, struktureffekter och hybridmaterialeffekter för förbättrad prestanda för olika analyser utöver dess inre egenskaper. 1) Ett positivt laddat hierarkiskt PEDOT-gränssnitt och ett negativt laddat karboxylsyra-funktionaliserad PEDOT (PEDOT: COOH) gränssnitt utvecklades for att modulera gränssnittets kinetik for de motsatt laddade analyterna, t.ex. negativt laddad s-Nicotinamidadeninudukleotid (NADH) respektive positivt laddat dopamin (DA). Den elektrokemiska avkänningsprestandan hos dessa analyser förbättrades baserat på laddningseffekten med högre känslighet och ett bredare linjärt intervall. 2) Med tanke på den väl skrymmande filmbildande egenskapen och den resulterande låga tillgängliga aktiva ytan för PEDOT, syntetiserades olika strukturerade PEDOT inklusive porösa mikrosfärer och nanofibrer via en hård mall respektive en mjuk mall och användes sedan som byggstenar för hierarkiska PEDOT och 3D nanofibrosa PEDOT-transduktionsgränssnitt, vilket underlättar signaltransduktion for NADH. 3) Ett LP-hybridmaterialgränssnitt utvecklades med användning av ett nytt bi-funktionellt grafenoxidderivat med hög reduktionsgrad och negativt laddad sulfonatterminal funktionalitet (S-RGO) med förbättrad elektrokemisk prestanda fär olika analyser. Baserat på det etablerade LP-baserade transduktionsgränssnittet utvecklades sedan de LP-baserade bio-gränssnitten med immobilisering av biomolekyler (t.ex. enzym) för biosensering. Immobiliseringen av enzym på LP-gränssnittet realiserades via antingen kovalent bindning till PEDOT-derivatbärande -COOH-grupper (PEDOT-COOH) genom EDC/NHS-kemi eller fysisk absorption i porösa 3D-PEDOT-strukturer. De LP-biobaserade gränssnitten visar stabil immobilisering av två olika typer av enzymer, d.v.s. laktatdehydrogenas och laktatoxidas, vilket uppnår biosensering av analyter genom en successiv bioelektrokemisk signaltransduktion. Tillsammans användes LP:er som det LP-baserade enhetsgränssnittet för tillverkning av en flexibel och bärbar biosenseringsanordning. Ett tredimensionellt bikakestrukturerat grafennatverk genererades in-situ på den flexibla polyimidytan genom maskfri mönstring med laserbestrålningsteknik. Substratet förstärktes sedan med nanodeponerat PEDOT som ett polymert bindemedel for att stabilisera det porösa 3D-nätverket genom vidhäftning och bindning, vilket sålunda förbättrade det mekaniska beteendet för flexibla och bärbara anordningar. Den sekventiella beläggningen på nanoskala av Preussiskt blått (PB) och immobiliseringen av enzym i det porösa 3Dnatverket minimerade delaminering av biosenseringsgränssnittet vid deformation, vilket försedde en flexibel plattform för en bärbar elektrokemisk biosensor för detektering av laktat i svett med det monterade treelektrodsystemet.

Low-power Wearable Healthcare Sensors

Low-power Wearable Healthcare Sensors
  • Author : R. Simon Sherratt ,Nilanjan Dey
  • Publisher :Unknown
  • Release Date :2020-12-29
  • Total pages :146
  • ISBN : 9783039364794
GET BOOK HERE

Summary : Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors.

Switchable Bioelectronics

Switchable Bioelectronics
  • Author : Onur Parlak
  • Publisher :Unknown
  • Release Date :2020-04-21
  • Total pages :198
  • ISBN : 9781000092219
GET BOOK HERE

Summary : This book reviews the rapidly emerging field of switchable interfaces and its implications for bioelectronics. The authors piece together early breakthroughs and key developments and highlight the future of switchable bioelectronics by focusing on bioelectrochemical processes based on mimicking and controlling biological environments with external stimuli as well as responsive systems for drug delivery. All chapters in the book strive to answer the fundamental question: How do living systems probe and respond to their surroundings? Following on from that, how can one transform these concepts to serve the practical world of bioelectronics? The central obstacle to this vision is the absence of versatile interfaces that are able to control and regulate the means of communication between biological and electronic systems. This book summarizes the overall progress made to date in building such interfaces at the level of individual biomolecules and focuses on the latest efforts to generate device platforms that integrate biointerfaces with electronics. Chapter 1 introduces the general concept of dynamic interfaces for bioelectronics and gives an overview of the importance of materials and systems for switchable bioelectronics, introducing the reader to different biointerfaces. Chapter 2 pieces together different types of stimuli-responsive polymers and applications. Chapter 3 lays special emphasis on stimuli-responsive polymers with tunable release kinetics and describes the importance of polymer design for delivery applications. Chapter 4 reviews the field of conformational switching in nanofibers for gas-sensing applications. Finally, Chapter 5 focuses on molecular imprinting polymers as recognition elements for sensing applications. As informative as it is lucid, this handbook makes an essential resource for advanced undergraduate- and graduate-level students in chemistry, as well as researchers in polymer science and electrochemistry, especially those with an interest in responsive polymers and biosensors.

Writable Biocatalytic Electrochemical Bioelectronics and Biosensors for Simultaneous Detection

Writable Biocatalytic Electrochemical Bioelectronics and Biosensors for Simultaneous Detection
  • Author : Ta-Yu Huang
  • Publisher :Unknown
  • Release Date :2017
  • Total pages :64
  • ISBN : OCLC:1000301430
GET BOOK HERE

Summary : In response to growing demands on minimally or non-invasive biosensors, developing soft wearable bioelectronics is of great interest to health care monitoring system researchers. The wearable bioelectronics enable continuous physiological and physical monitoring to maintain health status. However, the wearable sensor is a nascent field and many challenges remain unsolved. Current wearable devices on the markets predominantly monitor physical parameters such as heart rate, temperature, motion and pressure. Few wearable sensors are able to quantify chemicals on the human body, providing comprehensive information of an individual's well-being. Monitoring an individual's physiological status is helpful to prevent or delay the onset of diseases and their complications e.g. diabetes, gout and schizophrenia. The present thesis demonstrated the concept proof of wearable biosensors for metabolite quantification. The first chapter introduced a writable biocatalytic electrochemical ink that can be used in rapid prototyping glucose biosensors and biofuel cells. The strechability of the written biosensors and biofuel cells was investigated. The second chapter presented a screen printed biosensor that was able to simultaneously detect dopamine and uric acid. The screen printed biosensor was fabrication on a flexible substrate which is applicable for wearable devices.

Bioelectrochemistry

Bioelectrochemistry
  • Author : Serge Cosnier
  • Publisher :Unknown
  • Release Date :2019-03-04
  • Total pages :298
  • ISBN : 9783110570526
GET BOOK HERE

Summary : Bioelectrochemistry is a fast growing field linking together electrochemistry, biochemistry, medicinal chemistry and analytical chemistry. The current book outlines the recent progress in the area and the applications in biological materials design and bioenergy, covering in particular biosensors, bioelectronic devices, biofuel cells, biodegradable batteries and biomolecule-based computing.

Organic Flexible Electronics

Organic Flexible Electronics
  • Author : Piero Cosseddu,Mario Caironi
  • Publisher :Unknown
  • Release Date :2020-10-07
  • Total pages :664
  • ISBN : 9780128188910
GET BOOK HERE

Summary : Organic Electronics is a novel field of electronics that has gained an incredible attention over the past few decades. New materials, device architectures and applications have been continuously introduced by the academic and also industrial communities, and novel topics have raised strong interest in such communities, as molecular doping, thermoelectrics, bioelectronics and many others. Organic Flexible Electronics is mainly divided into three sections. The first part is focused on the fundamentals of organic electronics, such as charge transport models in these systems and new approaches for the design and synthesis of novel molecules. The first section addresses the main challenges that are still open in this field, including the important role of interfaces for achieving high-performing devices or the novel approaches employed for improving reliability issues. The second part discusses the most innovative devices which have been developed in recent years, such as devices for energy harvesting, flexible batteries, high frequency circuits, and flexible devices for tattoo electronics and bioelectronics. Finally the book reviews the most important applications moving from more standard flexible back panels to wearable and textile electronics and more futuristic applications like ingestible systems. Reviews the fundamental properties and methods for optimizing organic electronic materials including chemical doping and techniques to address stability issues; Discusses the most promising organic electronic devices for energy, electronics, and biomedical applications; Addresses key applications of organic electronic devices in imagers, wearable electronics, bioelectronics.

Graphene Bioelectronics

Graphene Bioelectronics
  • Author : Ashutosh Tiwari
  • Publisher :Unknown
  • Release Date :2017-11-22
  • Total pages :388
  • ISBN : 9780128133507
GET BOOK HERE

Summary : Graphene Bioelectronics covers the expending field of graphene biomaterials, a wide span of biotechnological breakthroughs, opportunities, possibilities and challenges. It is the first book that focuses entirely on graphene bioelectronics, covering the miniaturization of bioelectrode materials, bioelectrode interfaces, high-throughput biosensing platforms, and systemic approaches for the development of electrochemical biosensors and bioelectronics for biomedical and energy applications. The book also showcases key applications, including advanced security, forensics and environmental monitoring. Thus, the evolution of these scientific areas demands innovations in crosscutting disciplines, starting from fabrication to application. This book is an important reference resource for researchers and technologists in graphene bioelectronics—particularly those working in the area of harvest energy biotechnology—employing state-of-the-art bioelectrode materials techniques. Offers a comprehensive overview of state-of-art research on graphene bioelectronics and their potential applications Provides innovative fabrication strategies and utilization methodologies, which are frequently adopted in the graphene bioelectronics community Shows how graphene can be used to make more effective energy harvesting devices

Drug Delivery Devices and Therapeutic Systems

Drug Delivery Devices and Therapeutic Systems
  • Author : Eric Chappel
  • Publisher :Unknown
  • Release Date :2020-11-07
  • Total pages :678
  • ISBN : 9780128198391
GET BOOK HERE

Summary : Drug Delivery Devices and Therapeutic Systems examines the current technology and innovations moving drug delivery systems (DDS) forward. The book provides an overview on the therapeutic use of drug delivery devices, including design, applications, and a description of the design of each device. While other books focus on the therapy, the primary emphasis in this book is on current technologies for DDS applications, including microfluidics, nanotechnology, biodegradable hydrogel and microneedles, with a special emphasis on wearable DDS. As part of the Developments in Biomedical Engineering and Bioelectronics series, this book is written by experts in the field and informed with information directly from manufacturers. Pharmaceutical scientists, medical researchers, biomedical engineers and clinical professionals will find this an essential reference. Provides essential information on the most recent drug delivery systems available Explains current technology and its applications to drug delivery Contains contributions from biomedical engineers, pharmaceutical scientists and manufacturers

Implantable Biomedical Microsystems

Implantable Biomedical Microsystems
  • Author : Swarup Bhunia,Steve Majerus,Mohamad Sawan
  • Publisher :Unknown
  • Release Date :2015-01-28
  • Total pages :336
  • ISBN : 9780323261906
GET BOOK HERE

Summary : Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each component in an implantable device is described in details, and major case studies demonstrate how these systems can be optimized for specific design objectives. The case studies include applications of implantable neural signal processors, brain-machine interface (BMI) systems intended for both data recording and treatment, neural prosthesis, bladder pressure monitoring for treating urinary incontinence, implantable imaging devices for early detection and diagnosis of diseases as well as electrical conduction block of peripheral nerve for chronic pain management. Implantable Biomedical Microsystems is the first comprehensive coverage of bioimplantable system design providing an invaluable information source for researchers in Biomedical, Electrical, Computer, Systems, and Mechanical Engineering as well as engineers involved in design and development of wearable and implantable bioelectronic devices and, more generally, teams working on low-power microsystems and their corresponding wireless energy and data links. First time comprehensive coverage of system-level and component-level design and engineering aspects for implantable microsystems. Provides insight into a wide range of proven applications and application specific design trade-offs of bioimplantable systems, including several major case studies Enables Engineers involved in development of implantable electronic systems to optimize applications for specific design objectives.

Wearable Electronics and Embedded Computing Systems for Biomedical Applications

Wearable Electronics and Embedded Computing Systems for Biomedical Applications
  • Author : Enzo Pasquale Scilingo,Gaetano Valenza
  • Publisher :Unknown
  • Release Date :2018-04-03
  • Total pages :254
  • ISBN : 9783038423867
GET BOOK HERE

Summary : This book is a printed edition of the Special Issue "Wearable Electronics and Embedded Computing Systems for Biomedical Applications" that was published in Electronics

Biotechnology and Biological Sciences

Biotechnology and Biological Sciences
  • Author : Ramkrishna Sen,Susmita Mukherjee,Rajashree Paul,Rajiv Narula
  • Publisher :Unknown
  • Release Date :2019-12-12
  • Total pages :432
  • ISBN : 9781000044461
GET BOOK HERE

Summary : The application of Biotechnology dates back to the early era of civilization, when people first started to cultivate food crops. While the early applications are certainly still relevant, modern biotechnology is primarily associated with molecular biology, cloning and genetic engineering not only to increase the yield and to improve the quality of the crop but also its potential impact has touched upon virtually all domains of human interactions. Within the last 50 years, several key scientific discoveries revolutionized the biological sciences that facilitated the rapid growth of the biotechnology industry. 'Biotechnology and Biological Sciences III' contains the contributions presented at the 3rd International Conference on Biotechnology and Biological Sciences (BIOSPECTRUM 2019, Kolkata, India, 8-10 August 2019). The papers discuss various aspects of Biotechnology such as: microbial biotechnology, bioinformatics and drug designing, innovations in pharmaceutical industries and food processing industries, bioremediation, nano-biotechnology, and molecular-genetics, and will be of interest to academics and professionals involved or interested in these subject areas.

Flexible and Wearable Electronics for Smart Clothing

Flexible and Wearable Electronics for Smart Clothing
  • Author : Gang Wang,Chengyi Hou,Hongzhi Wang
  • Publisher :Unknown
  • Release Date :2020-02-24
  • Total pages :360
  • ISBN : 9783527818563
GET BOOK HERE

Summary : Provides the state-of-the-art on wearable technology for smart clothing The book gives a coherent overview of recent development on flexible electronics for smart clothing with emphasis on wearability and durability of the materials and devices. It offers detailed information on the basic functional components of the flexible and wearable electronics including sensing, systems-on-a-chip, interacting, and energy, as well as the integrating and connecting of electronics into textile form. It also provides insights into the compatibility and integration of functional materials, electronics, and the clothing technology. Flexible and Wearable Electronics for Smart Clothing offers comprehensive coverage of the technology in four parts. The first part discusses wearable organic nano-sensors, stimuli-responsive electronic skins, and flexible thermoelectrics and thermoelectric textiles. The next part examines textile triboelectric nanogenerators for energy harvesting, flexible and wearable solar cells and supercapacitors, and flexible and wearable lithium-ion batteries. Thermal and humid management for next-generation textiles, functionalization of fiber materials for washable smart wearable textiles, and flexible microfluidics for wearable electronics are covered in the next section. The last part introduces readers to piezoelectric materials and devices based flexible bio-integrated electronics, printed electronics for smart clothes, and the materials and processes for stretchable and wearable e-textile devices. -Presents the most recent developments in wearable technology such as wearable nanosensors, logic circuit, artificial intelligence, energy harvesting, and wireless communication -Covers the flexible and wearable electronics as essential functional components for smart clothing from sensing, systems-on-a-chip, interacting, energy to the integrating and connecting of electronics -Of high interest to a large and interdisciplinary target group, including materials scientists, textile chemists, and electronic engineers in academia and industry Flexible and Wearable Electronics for Smart Clothing will appeal to materials scientists, textile industry professionals, textile engineers, electronics engineers, and sensor developers.

The Role of Telehealth in an Evolving Health Care Environment

The Role of Telehealth in an Evolving Health Care Environment
  • Author : Institute of Medicine,Board on Health Care Services
  • Publisher :Unknown
  • Release Date :2012-12-20
  • Total pages :158
  • ISBN : 9780309262019
GET BOOK HERE

Summary : In 1996, the Institute of Medicine (IOM) released its report Telemedicine: A Guide to Assessing Telecommunications for Health Care. In that report, the IOM Committee on Evaluating Clinical Applications of Telemedicine found telemedicine is similar in most respects to other technologies for which better evidence of effectiveness is also being demanded. Telemedicine, however, has some special characteristics-shared with information technologies generally-that warrant particular notice from evaluators and decision makers. Since that time, attention to telehealth has continued to grow in both the public and private sectors. Peer-reviewed journals and professional societies are devoted to telehealth, the federal government provides grant funding to promote the use of telehealth, and the private technology industry continues to develop new applications for telehealth. However, barriers remain to the use of telehealth modalities, including issues related to reimbursement, licensure, workforce, and costs. Also, some areas of telehealth have developed a stronger evidence base than others. The Health Resources and Service Administration (HRSA) sponsored the IOM in holding a workshop in Washington, DC, on August 8-9 2012, to examine how the use of telehealth technology can fit into the U.S. health care system. HRSA asked the IOM to focus on the potential for telehealth to serve geographically isolated individuals and extend the reach of scarce resources while also emphasizing the quality and value in the delivery of health care services. This workshop summary discusses the evolution of telehealth since 1996, including the increasing role of the private sector, policies that have promoted or delayed the use of telehealth, and consumer acceptance of telehealth. The Role of Telehealth in an Evolving Health Care Environment: Workshop Summary discusses the current evidence base for telehealth, including available data and gaps in data; discuss how technological developments, including mobile telehealth, electronic intensive care units, remote monitoring, social networking, and wearable devices, in conjunction with the push for electronic health records, is changing the delivery of health care in rural and urban environments. This report also summarizes actions that the U.S. Department of Health and Human Services (HHS) can undertake to further the use of telehealth to improve health care outcomes while controlling costs in the current health care environment.

Cell-free Freeze-dried Synthetic Biology for Wearable Biotechnology Applications

Cell-free Freeze-dried Synthetic Biology for Wearable Biotechnology Applications
  • Author : Luis Rubén Soenksen Martinez
  • Publisher :Unknown
  • Release Date :2020
  • Total pages :173
  • ISBN : OCLC:1196353141
GET BOOK HERE

Summary : Synthetic biology aims to develop modular genetic networks for computation, sensing, and control of biological systems, holding great promise for next-generation biosensing platforms. Similarly, advances in material sciences have allowed for the design of substrates and textiles engineered to exhibit novel mechanical, electrical, and optical properties for sensing and actuation. Wearable biosensors using synthetic biology principles and smart materials could expand on this potential, especially as solutions for continuous, fine-grained monitoring of physiological status, disease states, and pathogen/toxin exposure difficult to assess with other methods. Despite this, only few examples of synthetic biology sensors compatible with wearable use-cases have been described, all of which rely on the use of live engineered bacteria with sustainment limitations. Thus, we report on the development of novel shelf-stable, genetically-programmable, and highly sensitive wearable sensing platforms based on cell-free synthetic biology components freeze-dried into flexible substrates and textiles; as well as on a new class of smart programmable synthetic biology materials capable of reacting to environmental queues. These systems were designed to exhibit colorimetric, fluorescent, luminescence, electrical, or mechanical outputs that can be passively or actively interrogated within isolated modules or in larger-scale garments with wireless networking capabilities. We functionally validated such platforms using a variety of synthetic biology circuits for detecting several relevant environmental exposure targets such as metabolites, chemicals, and pathogen-associated nucleic acids. These findings suggest that cell-free synthetic biology tools have the potential to enable highly programmable wearable systems for rapid on-body detection or adaptation to external threats in first responders, warfighters or clinical personnel, as well as the assessment of athletic performance and monitoring to complex disease states.

Wearable Physical, Chemical and Biological Sensors

Wearable Physical, Chemical and Biological Sensors
  • Author : Eden Morales-Narvaez,Can Dincer
  • Publisher :Unknown
  • Release Date :2021-08-15
  • Total pages :313
  • ISBN : 0128216611
GET BOOK HERE

Summary : Wearable Physical, Chemical and Biological Sensors: Fundamentals, Materials and Applications introduces readers of all backgrounds - chemistry, mechanics, electronics, photonics, biology, microfluidics, materials, and more - to the fundamental principles needed to develop wearable sensors for a host of different applications. The capability to continuously monitor organ-related biomarkers, environmental exposure, movement disorders, and other health conditions using miniaturized devices that operate in real time provides numerous benefits, such as avoiding or delaying the onset of disease, saving resources allocated to public health, and making better decisions related to medical diagnostics or treatment. Worn as glasses, masks, wristwatches, fitness-like bands, tattoo-like devices, or bandage-like patches, wearable devices are also being boosted by the Internet of Things in combination with mobile devices such as smartphones. Written by experts in their respective fields, Wearable Physical, Chemical and Biological Sensors: Fundamentals, Materials and Applications provides insights on how to design, fabricate, and operate these sensors. Provides a holistic view of the field, covering physical, chemical, and biosensing approaches along with the advantages of their various functionalities Covers all necessary elements for developing wearable sensors, including materials, biorecognition elements, transductions systems, signal amplification strategies, and system design considerations Each chapter includes examples, summaries, and references for further reading

Wearable Technology and Mobile Innovations for Next-Generation Education

Wearable Technology and Mobile Innovations for Next-Generation Education
  • Author : Holland, Janet
  • Publisher :Unknown
  • Release Date :2016-04-08
  • Total pages :364
  • ISBN : 9781522500704
GET BOOK HERE

Summary : Advances in technology continue to alter the ways in which we conduct our lives, from the private sphere to how we interact with others in public. As these innovations become more integrated into modern society, their applications become increasingly relevant in various facets of life. Wearable Technology and Mobile Innovations for Next-Generation Education is an authoritative reference source on the development and implementation of wearables within learning and training environments, emphasizing the valuable resources offered by these advances. Focusing on technical considerations, lessons learned, and real-world examples, this book is ideally designed for instructors, researchers, upper-level students, and policy makers interested in the effectiveness of wearable applications.

Bioelectronics and Medical Devices

Bioelectronics and Medical Devices
  • Author : Dr. Kunal Pal,Heinz-Bernhard Kraatz,Anwesha Khasnobish,Sandip Bag,Indranil Banerjee,Usha Kuruganti
  • Publisher :Unknown
  • Release Date :2019-06-15
  • Total pages :1006
  • ISBN : 9780081024218
GET BOOK HERE

Summary : Bioelectronics and Medical Devices: From Materials to Devices-Fabrication, Applications and Reliability reviews the latest research on electronic devices used in the healthcare sector, from materials, to applications, including biosensors, rehabilitation devices, drug delivery devices, and devices based on wireless technology. This information is presented from the unique interdisciplinary perspective of the editors and contributors, all with materials science, biomedical engineering, physics, and chemistry backgrounds. Each applicable chapter includes a discussion of these devices, from materials and fabrication, to reliability and technology applications. Case studies, future research directions and recommendations for additional readings are also included. The book addresses hot topics, such as the latest, state-of the-art biosensing devices that have the ability for early detection of life-threatening diseases, such as tuberculosis, HIV and cancer. It covers rehabilitation devices and advancements, such as the devices that could be utilized by advanced-stage ALS patients to improve their interactions with the environment. In addition, electronic controlled delivery systems are reviewed, including those that are based on artificial intelligences. Presents the latest topics, including MEMS-based fabrication of biomedical sensors, Internet of Things, certification of medical and drug delivery devices, and electrical safety considerations Presents the interdisciplinary perspective of materials scientists, biomedical engineers, physicists and chemists on biomedical electronic devices Features systematic coverage in each chapter, including recent advancements in the field, case studies, future research directions, and recommendations for additional readings