Download Wearable Bioelectronics Book PDF

Download full Wearable Bioelectronics books PDF, EPUB, Tuebl, Textbook, Mobi or read online Wearable Bioelectronics anytime and anywhere on any device. Get free access to the library by create an account, fast download and ads free. We cannot guarantee that every book is in the library.

Wearable Bioelectronics

Wearable Bioelectronics
  • Author : Anthony P.F. Turner,Alberto Salleo,Onur Parlak
  • Publisher :Unknown
  • Release Date :2019-11-26
  • Total pages :238
  • ISBN : 9780081024089
GET BOOK HERE

Summary : Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications. Includes comprehensive and systematic coverage of the most exciting and promising bioelectronics, processes for their fabrication, and their applications in healthcare Reviews innovative applications, such as self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors and electronic skin Examines and discusses the future of wearable bioelectronics Addresses the wearable electronics market as a development of the healthcare industry

Stretchable Bioelectronics for Medical Devices and Systems

Stretchable Bioelectronics for Medical Devices and Systems
  • Author : John A. Rogers,Roozbeh Ghaffari,Dae-Hyeong Kim
  • Publisher :Unknown
  • Release Date :2016-03-31
  • Total pages :314
  • ISBN : 9783319286945
GET BOOK HERE

Summary : This book highlights recent advances in soft and stretchable biointegrated electronics. A renowned group of authors address key ideas in the materials, processes, mechanics, and devices of soft and stretchable electronics; the wearable electronics systems; and bioinspired and implantable biomedical electronics. Among the topics discussed are liquid metals, stretchable and flexible energy sources, skin-like devices, in vitro neural recording, and more. Special focus is given to recent advances in extremely soft and stretchable bio-inspired electronics with real-world clinical studies that validate the technology. Foundational theoretical and experimental aspects are also covered in relation to the design and application of these biointegrated electronics systems. This is an ideal book for researchers, engineers, and industry professionals involved in developing healthcare devices, medical tools and related instruments relevant to various clinical practices.

Wearable Devices

Wearable Devices
  • Author : Noushin Nasiri
  • Publisher :Unknown
  • Release Date :2019-12-04
  • Total pages :144
  • ISBN : 9781789844962
GET BOOK HERE

Summary : Wearable technologies are equipped with microchips and sensors capable of tracking and wirelessly communicating information in real time. With innovations on the horizon, the future of wearable devices will go beyond answering calls or counting our steps to providing us with sophisticated wearable gadgets capable of addressing fundamental and technological challenges. This book investigates the development of wearable technologies across a range of applications from educational assessment to health, biomedical sensing, and energy harvesting. Furthermore, it discusses some key innovations in micro/nano fabrication of these technologies, their basic working mechanisms, and the challenges facing their progress.

Tailoring Conducting Polymer Interface for Sensing and Biosensing

Tailoring Conducting Polymer Interface for Sensing and Biosensing
  • Author : Lingyin Meng
  • Publisher :Unknown
  • Release Date :2020-09-17
  • Total pages :82
  • ISBN : 9789179298005
GET BOOK HERE

Summary : The routine measurement of signi?cant physiological and biochemical parameters has become increasingly important for health monitoring especially in the cases of elderly people, infants, patients with chronic diseases, athletes and soldiers etc. Monitoring is used to assess both physical fitness level and for disease diagnosis and treatment. Considerable attention has been paid to electrochemical sensors and biosensors as point-of-care diagnostic devices for healthcare management because of their fast response, low-cost, high specificity and ease of operation. The analytical performance of such devices is significantly driven by the high-quality sensing interface, involving signal transduction at the transducer interface and efficient coupling of biomolecules at the transducer bio-interface for specific analyte recognition. The discovery of functional and structured materials, such as metallic and carbon nanomaterials (e.g. gold and graphene), has facilitated the construction of high-performance transducer interfaces which benefit from their unique physicochemical properties. Further exploration of advanced materials remains highly attractive to achieve well-designed and tailored interfaces for electrochemical sensing and biosensing driven by the emerging needs and demands of the “Internet of Things” and wearable sensors. Conducting polymers (CPs) are emerging functional polymers with extraordinary redox reversibility, electronic/ionic conductivity and mechanical properties, and show considerable potential as a transducer material in sensing and biosensing. While the intrinsic electrocatalytic property of the CPs is limited, especially for the bulk polymer, tailoring of CPs with controlled structure and efficient dopants could improve the electrochemical performance of a transducer interface by delivering a larger surface area and enhanced electrocatalytic property. In addition, the rich synthetic chemistry of CPs endows them with versatile functional groups to modulate the interfacial properties of the polymer for effective biomolecule coupling, thus bridging organic electronics and bioelectrochemistry. Moreover, the soft-material characteristics of CPs enable their use for the development of flexible and wearable sensing platforms which are inexpensive and light-weight, compared to conventional rigid materials, such as carbons, metals and semiconductors. This thesis focuses on the exploration of CPs for electrochemical sensing and biosensing with improved sensitivity, selectivity and stability by tailoring CP interfaces at different levels, including the CP-based transduction interface, CP-based bio-interface and CP-based device interface. First, we demonstrate different strategies for tailoring the physicochemical properties of poly (3,4-ethylenedioxythiophene) (PEDOT) beyond its intrinsic properties, via charge effects, structural effects and by the use of hybrid materials, as a CP-based transduction interface to improve sensing performance of various analytes. 1) A positively-charged PEDOT interface, and a negatively-charged carboxylic-acid-functionalised PEDOT (PEDOT:COOH) interface were developed to modulate the electrode kinetics for oppositely-charged analytes, e.g. negatively-charged nicotinamide adenine dinucleotide (NADH) and positively-charged dopamine (DA), respectively. These interfaces displayed high sensitivity and wide linear range towards the analytes due to the electrostatic attraction effect. 2) Various structured PEDOT including porous microspheres and nanofibres were synthesised via hard-template and soft-template methods, respectively, and were employed as building blocks for a hierarchical PEDOT and 3D nanofibrous PEDOT transduction interface, that facilitated signal transduction for NADH. 3) A PEDOT hybrid material interface was developed via using a novel bi-functional graphene oxide derivative with high reduction degree and negatively-charged sulphonate terminal functionality (S-RGO) as dopant to create PEDOT:S-RGO which delivered an enhanced electrochemical performance for various analytes. Based on the established CP-based transduction interface, biomolecules (e.g. enzymes) could be coupled to the CP surface to create CP-based bio-interfaces for biosensing. The immobilisation of enzyme was realised via either covalent bonding to a PEDOT derivative bearing a -COOH group (PEDOT-COOH) through EDC/NHS chemistry, or by physical absorption into the 3D porous PEDOT structure. The CP-based bio-interfaces were used to demonstrate the stable immobilisation of two different types of enzymes, i.e. lactate dehydrogenase and lactate oxidase, achieving the biosensing of analytes by relay bioelectrochemical signal transduction. Together, CP was employed as the CP-based device interface for the fabrication of a flexible and wearable biosensing device. A 3D honeycomb-structured graphene network was generated in-situ on a flexible polyimide surface by mask-free patterning using laser irradiation. The substrate was then reinforced with PEDOT as a polymeric binder to stabilise the 3D porous network by adhesion and binding, thus minimising the delamination of the biosensing interface under deformation and enhancing the mechanical behaviours for use in flexible and wearable devices. The subsequent nanoscale-coating of Prussian blue and immobilisation of enzyme into the 3D porous network provided a flexible platform for wearable electrochemical biosensors to detect lactate in sweat. Rutinmässig övervakning av hälsorelaterade fysiologiska och biokemiska parametrar har blivit allt viktigare för ett stort antal människor bland annat seniorer, spädbarn, patienter med kroniska sjukdomar, idrottare, soldater och med flera, på både en fysisk nivå för förebyggande av sjukdomar samt på en medicinsk nivå för diagnos och behandling av sjukdomar. Stor uppmärksamhet har lagts på utveckling av elektrokemiska sensorer och biosensorer som point-of-care (PoC) diagnostiska enheter for rutinmässig sjukvårdsledning genom deras snabba svar, låga kostnad, höga specificitet och enkla drift. Deras analytiska funktioner drivs av avkänningsgranssnittet vilket involverar signaltransduktion vid transducer-gränssnittet och effektiv koppling av biomolekyler till transducer-biogränssnittet för specifik analytigenkänning. Upptäckten av konventionella funktionella och strukturerade material, t.ex. metalliska nanopartiklar, kolnanorör och grafen, har underlättat konstruktionen av transducergränssnitt med hög prestanda på grund av deras unika fysiokemiska egenskaper. Ytterligare forskning av avancerade material ar önskvärt for att uppnå ett väldesignat och skräddarsytt gränsnitt for elektrokemisk avkänning och biosensering for Internet of Things och klädd sensorer. Ledande polymerer (LP) ar en typ av nya funktionella polymerer med extraordinär redoxomvändbarhet, elektronisk/jonisk ledningsförmåga och mekaniska egenskaper, som uppvisar betydande potential som ett givarmaterial vid avkänning och biosensering. Medan de inneboende elektrokatalytiska egenskaperna i LP:er är begränsade, speciellt for den skrymmande polymeren, kan skräddarsydda LP:er med kontrollerad struktur och effektiva dopmedel förbättra den elektrokemiska prestandan hos ett givargränssnitt med större ytarea och förbättrade elektrokatalytiska egenskaper. Dessutom ger den syntetiska kemin LP:er mångsidiga funktionella grupper för att modulera gränssnittsegenskaperna för LP:er för att förbättra selektivitet for analytdetektering, såväl som för effektiv biomolekylkoppling som ett biogränssnitt som överbryggar den organiska elektroniken och det biologiska system som stöds av de LP:s organkemiska natur. Dessutom möjliggör de mjuka materialegenskaperna för LP:er för användning i utveckling av en flexibla och bärbara avkänningsplattformar med låg kostnad och lätt vikt, jämfört med konventionella styva material, såsom metaller och halvledare. Denna avhandling fokuserar på utforskning av LP:er för elektrokemisk avkänning och biosensering med förbättrad känslighet, selektivitet och stabilitet genom att skräddarsy LP:s gränssnitt i olika nivåer, inklusive LP-baserat transduktionsgränssnitt, LP-baserat bio-gränssnitt och LP-baserat enhetsgränssnitt. Först demonstrerar vi olika strategier for att skräddarsy fysikalisk-kemiska egenskaper hos poly (3,4-etylendioxytiofen) (PEDOT) som ett LP-baserat transduktionsgränssnitt för avkänning via laddningseffekter, struktureffekter och hybridmaterialeffekter för förbättrad prestanda för olika analyser utöver dess inre egenskaper. 1) Ett positivt laddat hierarkiskt PEDOT-gränssnitt och ett negativt laddat karboxylsyra-funktionaliserad PEDOT (PEDOT: COOH) gränssnitt utvecklades for att modulera gränssnittets kinetik for de motsatt laddade analyterna, t.ex. negativt laddad s-Nicotinamidadeninudukleotid (NADH) respektive positivt laddat dopamin (DA). Den elektrokemiska avkänningsprestandan hos dessa analyser förbättrades baserat på laddningseffekten med högre känslighet och ett bredare linjärt intervall. 2) Med tanke på den väl skrymmande filmbildande egenskapen och den resulterande låga tillgängliga aktiva ytan för PEDOT, syntetiserades olika strukturerade PEDOT inklusive porösa mikrosfärer och nanofibrer via en hård mall respektive en mjuk mall och användes sedan som byggstenar för hierarkiska PEDOT och 3D nanofibrosa PEDOT-transduktionsgränssnitt, vilket underlättar signaltransduktion for NADH. 3) Ett LP-hybridmaterialgränssnitt utvecklades med användning av ett nytt bi-funktionellt grafenoxidderivat med hög reduktionsgrad och negativt laddad sulfonatterminal funktionalitet (S-RGO) med förbättrad elektrokemisk prestanda fär olika analyser. Baserat på det etablerade LP-baserade transduktionsgränssnittet utvecklades sedan de LP-baserade bio-gränssnitten med immobilisering av biomolekyler (t.ex. enzym) för biosensering. Immobiliseringen av enzym på LP-gränssnittet realiserades via antingen kovalent bindning till PEDOT-derivatbärande -COOH-grupper (PEDOT-COOH) genom EDC/NHS-kemi eller fysisk absorption i porösa 3D-PEDOT-strukturer. De LP-biobaserade gränssnitten visar stabil immobilisering av två olika typer av enzymer, d.v.s. laktatdehydrogenas och laktatoxidas, vilket uppnår biosensering av analyter genom en successiv bioelektrokemisk signaltransduktion. Tillsammans användes LP:er som det LP-baserade enhetsgränssnittet för tillverkning av en flexibel och bärbar biosenseringsanordning. Ett tredimensionellt bikakestrukturerat grafennatverk genererades in-situ på den flexibla polyimidytan genom maskfri mönstring med laserbestrålningsteknik. Substratet förstärktes sedan med nanodeponerat PEDOT som ett polymert bindemedel for att stabilisera det porösa 3D-nätverket genom vidhäftning och bindning, vilket sålunda förbättrade det mekaniska beteendet för flexibla och bärbara anordningar. Den sekventiella beläggningen på nanoskala av Preussiskt blått (PB) och immobiliseringen av enzym i det porösa 3Dnatverket minimerade delaminering av biosenseringsgränssnittet vid deformation, vilket försedde en flexibel plattform för en bärbar elektrokemisk biosensor för detektering av laktat i svett med det monterade treelektrodsystemet.

Low-power Wearable Healthcare Sensors

Low-power Wearable Healthcare Sensors
  • Author : R. Simon Sherratt ,Nilanjan Dey
  • Publisher :Unknown
  • Release Date :2020-12-29
  • Total pages :146
  • ISBN : 9783039364794
GET BOOK HERE

Summary : Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors.

Writable Biocatalytic Electrochemical Bioelectronics and Biosensors for Simultaneous Detection

Writable Biocatalytic Electrochemical Bioelectronics and Biosensors for Simultaneous Detection
  • Author : Ta-Yu Huang
  • Publisher :Unknown
  • Release Date :2017
  • Total pages :64
  • ISBN : OCLC:1000301430
GET BOOK HERE

Summary : In response to growing demands on minimally or non-invasive biosensors, developing soft wearable bioelectronics is of great interest to health care monitoring system researchers. The wearable bioelectronics enable continuous physiological and physical monitoring to maintain health status. However, the wearable sensor is a nascent field and many challenges remain unsolved. Current wearable devices on the markets predominantly monitor physical parameters such as heart rate, temperature, motion and pressure. Few wearable sensors are able to quantify chemicals on the human body, providing comprehensive information of an individual's well-being. Monitoring an individual's physiological status is helpful to prevent or delay the onset of diseases and their complications e.g. diabetes, gout and schizophrenia. The present thesis demonstrated the concept proof of wearable biosensors for metabolite quantification. The first chapter introduced a writable biocatalytic electrochemical ink that can be used in rapid prototyping glucose biosensors and biofuel cells. The strechability of the written biosensors and biofuel cells was investigated. The second chapter presented a screen printed biosensor that was able to simultaneously detect dopamine and uric acid. The screen printed biosensor was fabrication on a flexible substrate which is applicable for wearable devices.

Bioelectronics and Medical Devices

Bioelectronics and Medical Devices
  • Author : Dr. Kunal Pal,Heinz-Bernhard Kraatz,Anwesha Khasnobish,Sandip Bag,Indranil Banerjee,Usha Kuruganti
  • Publisher :Unknown
  • Release Date :2019-06-15
  • Total pages :1006
  • ISBN : 9780081024218
GET BOOK HERE

Summary : Bioelectronics and Medical Devices: From Materials to Devices-Fabrication, Applications and Reliability reviews the latest research on electronic devices used in the healthcare sector, from materials, to applications, including biosensors, rehabilitation devices, drug delivery devices, and devices based on wireless technology. This information is presented from the unique interdisciplinary perspective of the editors and contributors, all with materials science, biomedical engineering, physics, and chemistry backgrounds. Each applicable chapter includes a discussion of these devices, from materials and fabrication, to reliability and technology applications. Case studies, future research directions and recommendations for additional readings are also included. The book addresses hot topics, such as the latest, state-of the-art biosensing devices that have the ability for early detection of life-threatening diseases, such as tuberculosis, HIV and cancer. It covers rehabilitation devices and advancements, such as the devices that could be utilized by advanced-stage ALS patients to improve their interactions with the environment. In addition, electronic controlled delivery systems are reviewed, including those that are based on artificial intelligences. Presents the latest topics, including MEMS-based fabrication of biomedical sensors, Internet of Things, certification of medical and drug delivery devices, and electrical safety considerations Presents the interdisciplinary perspective of materials scientists, biomedical engineers, physicists and chemists on biomedical electronic devices Features systematic coverage in each chapter, including recent advancements in the field, case studies, future research directions, and recommendations for additional readings

Interfacing Bioelectronics and Biomedical Sensing

Interfacing Bioelectronics and Biomedical Sensing
  • Author : Hung Cao,Todd Coleman,Tzung K. Hsiai,Ali Khademhosseini
  • Publisher :Unknown
  • Release Date :2020-02-13
  • Total pages :234
  • ISBN : 9783030344672
GET BOOK HERE

Summary : This book addresses the fundamental challenges underlying bioelectronics and tissue interface for clinical investigation. Appropriate for biomedical engineers and researchers, the authors cover topics ranging from retinal implants to restore vision, implantable circuits for neural implants, and intravascular electrochemical impedance to detect unstable plaques. In addition to these chapters, the authors also document the approaches and issues of multi-scale physiological assessment and monitoring in both humans and animal models for health monitoring and biological investigations; novel biomaterials such as conductive and biodegradable polymers to be used in biomedical devices; and the optimization of wireless power transfer via inductive coupling for batteryless and wireless implantable medical devices. In addition to engineers and researchers, this book is also an ideal supplementary or reference book for a number of courses in biomedical engineering programs, such as bioinstrumentation, MEMS/BioMEMS, bioelectronics and sensors, and more. Analyzes and discusses the electrode-tissue interfaces for optimization of biomedical devices. Introduces novel biomaterials to be used in next-generation biomedical devices. Discusses high-frequency transducers for biomedical applications.

Organic Flexible Electronics

Organic Flexible Electronics
  • Author : Piero Cosseddu,Mario Caironi
  • Publisher :Unknown
  • Release Date :2020-10-07
  • Total pages :664
  • ISBN : 9780128188910
GET BOOK HERE

Summary : Organic Electronics is a novel field of electronics that has gained an incredible attention over the past few decades. New materials, device architectures and applications have been continuously introduced by the academic and also industrial communities, and novel topics have raised strong interest in such communities, as molecular doping, thermoelectrics, bioelectronics and many others. Organic Flexible Electronics is mainly divided into three sections. The first part is focused on the fundamentals of organic electronics, such as charge transport models in these systems and new approaches for the design and synthesis of novel molecules. The first section addresses the main challenges that are still open in this field, including the important role of interfaces for achieving high-performing devices or the novel approaches employed for improving reliability issues. The second part discusses the most innovative devices which have been developed in recent years, such as devices for energy harvesting, flexible batteries, high frequency circuits, and flexible devices for tattoo electronics and bioelectronics. Finally the book reviews the most important applications moving from more standard flexible back panels to wearable and textile electronics and more futuristic applications like ingestible systems. Reviews the fundamental properties and methods for optimizing organic electronic materials including chemical doping and techniques to address stability issues; Discusses the most promising organic electronic devices for energy, electronics, and biomedical applications; Addresses key applications of organic electronic devices in imagers, wearable electronics, bioelectronics.

Graphene Bioelectronics

Graphene Bioelectronics
  • Author : Ashutosh Tiwari
  • Publisher :Unknown
  • Release Date :2017-11-22
  • Total pages :388
  • ISBN : 9780128133507
GET BOOK HERE

Summary : Graphene Bioelectronics covers the expending field of graphene biomaterials, a wide span of biotechnological breakthroughs, opportunities, possibilities and challenges. It is the first book that focuses entirely on graphene bioelectronics, covering the miniaturization of bioelectrode materials, bioelectrode interfaces, high-throughput biosensing platforms, and systemic approaches for the development of electrochemical biosensors and bioelectronics for biomedical and energy applications. The book also showcases key applications, including advanced security, forensics and environmental monitoring. Thus, the evolution of these scientific areas demands innovations in crosscutting disciplines, starting from fabrication to application. This book is an important reference resource for researchers and technologists in graphene bioelectronics—particularly those working in the area of harvest energy biotechnology—employing state-of-the-art bioelectrode materials techniques. Offers a comprehensive overview of state-of-art research on graphene bioelectronics and their potential applications Provides innovative fabrication strategies and utilization methodologies, which are frequently adopted in the graphene bioelectronics community Shows how graphene can be used to make more effective energy harvesting devices

Wearable Electronics and Embedded Computing Systems for Biomedical Applications

Wearable Electronics and Embedded Computing Systems for Biomedical Applications
  • Author : Enzo Pasquale Scilingo,Gaetano Valenza
  • Publisher :Unknown
  • Release Date :2018-04-03
  • Total pages :254
  • ISBN : 9783038423867
GET BOOK HERE

Summary : This book is a printed edition of the Special Issue "Wearable Electronics and Embedded Computing Systems for Biomedical Applications" that was published in Electronics

Drug Delivery Devices and Therapeutic Systems

Drug Delivery Devices and Therapeutic Systems
  • Author : Eric Chappel
  • Publisher :Unknown
  • Release Date :2020-11-07
  • Total pages :678
  • ISBN : 9780128198391
GET BOOK HERE

Summary : Drug Delivery Devices and Therapeutic Systems examines the current technology and innovations moving drug delivery systems (DDS) forward. The book provides an overview on the therapeutic use of drug delivery devices, including design, applications, and a description of the design of each device. While other books focus on the therapy, the primary emphasis in this book is on current technologies for DDS applications, including microfluidics, nanotechnology, biodegradable hydrogel and microneedles, with a special emphasis on wearable DDS. As part of the Developments in Biomedical Engineering and Bioelectronics series, this book is written by experts in the field and informed with information directly from manufacturers. Pharmaceutical scientists, medical researchers, biomedical engineers and clinical professionals will find this an essential reference. Provides essential information on the most recent drug delivery systems available Explains current technology and its applications to drug delivery Contains contributions from biomedical engineers, pharmaceutical scientists and manufacturers

Switchable Bioelectronics

Switchable Bioelectronics
  • Author : Onur Parlak
  • Publisher :Unknown
  • Release Date :2020-04-21
  • Total pages :198
  • ISBN : 9781000092219
GET BOOK HERE

Summary : This book reviews the rapidly emerging field of switchable interfaces and its implications for bioelectronics. The authors piece together early breakthroughs and key developments and highlight the future of switchable bioelectronics by focusing on bioelectrochemical processes based on mimicking and controlling biological environments with external stimuli as well as responsive systems for drug delivery. All chapters in the book strive to answer the fundamental question: How do living systems probe and respond to their surroundings? Following on from that, how can one transform these concepts to serve the practical world of bioelectronics? The central obstacle to this vision is the absence of versatile interfaces that are able to control and regulate the means of communication between biological and electronic systems. This book summarizes the overall progress made to date in building such interfaces at the level of individual biomolecules and focuses on the latest efforts to generate device platforms that integrate biointerfaces with electronics. Chapter 1 introduces the general concept of dynamic interfaces for bioelectronics and gives an overview of the importance of materials and systems for switchable bioelectronics, introducing the reader to different biointerfaces. Chapter 2 pieces together different types of stimuli-responsive polymers and applications. Chapter 3 lays special emphasis on stimuli-responsive polymers with tunable release kinetics and describes the importance of polymer design for delivery applications. Chapter 4 reviews the field of conformational switching in nanofibers for gas-sensing applications. Finally, Chapter 5 focuses on molecular imprinting polymers as recognition elements for sensing applications. As informative as it is lucid, this handbook makes an essential resource for advanced undergraduate- and graduate-level students in chemistry, as well as researchers in polymer science and electrochemistry, especially those with an interest in responsive polymers and biosensors.

Bioelectrochemistry

Bioelectrochemistry
  • Author : Serge Cosnier
  • Publisher :Unknown
  • Release Date :2019-03-04
  • Total pages :298
  • ISBN : 9783110570526
GET BOOK HERE

Summary : Bioelectrochemistry is a fast growing field linking together electrochemistry, biochemistry, medicinal chemistry and analytical chemistry. The current book outlines the recent progress in the area and the applications in biological materials design and bioenergy, covering in particular biosensors, bioelectronic devices, biofuel cells, biodegradable batteries and biomolecule-based computing.

Implantable Biomedical Microsystems

Implantable Biomedical Microsystems
  • Author : Swarup Bhunia,Steve Majerus,Mohamad Sawan
  • Publisher :Unknown
  • Release Date :2015-01-28
  • Total pages :336
  • ISBN : 9780323261906
GET BOOK HERE

Summary : Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each component in an implantable device is described in details, and major case studies demonstrate how these systems can be optimized for specific design objectives. The case studies include applications of implantable neural signal processors, brain-machine interface (BMI) systems intended for both data recording and treatment, neural prosthesis, bladder pressure monitoring for treating urinary incontinence, implantable imaging devices for early detection and diagnosis of diseases as well as electrical conduction block of peripheral nerve for chronic pain management. Implantable Biomedical Microsystems is the first comprehensive coverage of bioimplantable system design providing an invaluable information source for researchers in Biomedical, Electrical, Computer, Systems, and Mechanical Engineering as well as engineers involved in design and development of wearable and implantable bioelectronic devices and, more generally, teams working on low-power microsystems and their corresponding wireless energy and data links. First time comprehensive coverage of system-level and component-level design and engineering aspects for implantable microsystems. Provides insight into a wide range of proven applications and application specific design trade-offs of bioimplantable systems, including several major case studies Enables Engineers involved in development of implantable electronic systems to optimize applications for specific design objectives.

Flexible and Stretchable Electronics

Flexible and Stretchable Electronics
  • Author : Run-Wei Li,Gang Liu
  • Publisher :Unknown
  • Release Date :2019-12-11
  • Total pages :392
  • ISBN : 9780429602689
GET BOOK HERE

Summary : With the recently well developed areas of Internet of Thing, consumer wearable gadgets and artificial intelligence, flexible and stretchable electronic devices have spurred great amount of interest from both the global scientific and industrial communities. As an emerging technology, flexible and stretchable electronics requires the scale-span fabrication of devices involving nano-features, microstructures and macroscopic large area manufacturing. The key factor behind covers the organic, inorganic and nano materials that exhibit completely different mechanical and electrical properties, as well as the accurate interfacial control between these components. Based on the fusion of chemistry, physics, biology, materials science and information technology, this review volume will try to offer a timely and comprehensive overview on the flexible and stretchable electronic materials and devices. The book will cover the working principle, materials selection, device fabrication and applications of electronic components of transistors, solar cells, memories, sensors, supercapacitors, circuits and etc.

Wearable and Autonomous Biomedical Devices and Systems for Smart Environment

Wearable and Autonomous Biomedical Devices and Systems for Smart Environment
  • Author : Aimé Lay-Ekuakille
  • Publisher :Unknown
  • Release Date :2010-10-04
  • Total pages :408
  • ISBN : 3642156878
GET BOOK HERE

Summary : This book is dedicated to wearable and autonomous systems, including devices, offers to variety of users, namely, master degree students, researchers and practitioners, An opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field. The book draws the attention about interesting aspects, as for instance, advanced wearable sensors for enabling applications, solutions for arthritic patients in their limited and conditioned movements, wearable gate analysis, energy harvesting, physiological parameter monitoring, communication, pathology detection , etc..

Power Management for Wearable Electronic Devices

Power Management for Wearable Electronic Devices
  • Author : Dima Kilani,Baker Mohammad,Mohammad Alhawari,Hani Saleh,Mohammed Ismail
  • Publisher :Unknown
  • Release Date :2020-01-17
  • Total pages :103
  • ISBN : 9783030378844
GET BOOK HERE

Summary : This book describes power management integrated circuits (PMIC), for power converters and voltage regulators necessary for energy efficient and small form factor systems. The authors discuss state-of-the-art PMICs not only for battery powered wearable devices, but also energy harvesting-based devices. The circuits presented support voltage scaling to reduce the overall average power consumption of a wearable device, resulting in longer device operating time. The discussion includes many designs, control techniques and approaches to distribute efficiently the power among different blocks in the device. • Demonstrates for readers how to innovate in designing power management integrated circuits (PMIC) suitable for wearable devices, powered by either battery or harvesting energy; • Introduces a dual outputs switched capacitor, using a single voltage regulator to minimize the area overhead and discusses the effect of having more than two outputs on the area and power efficiency; • Introduces a novel clock-less digital LDO regulator that eliminates the use of the clocked comparator and serial shift register in the conventional design; • Presents experimental results of energy harvesting-based power management units (PMU), using different combinations of power converters and voltage regulators, providing a guide for designers to select the appropriate option based on device requirements.

Nanobiotechnology for Sensing Applications

Nanobiotechnology for Sensing Applications
  • Author : Ajeet Kumar Kaushik,Chandra K. Dixit
  • Publisher :Unknown
  • Release Date :2016-11-03
  • Total pages :386
  • ISBN : 9781315342207
GET BOOK HERE

Summary : This book explores the potential of nanosystems as a multidisciplinary science with the aim of the design and development of smart sensing technologies using micro/nano electrodes and novel nanosensing material. It discusses their integration with MEMS, miniaturized transduction systems, novel sensing strategies, and wearable sensors performing at POC for diagnostics and personalized health care monitoring. It presents basic concepts pertaining to nanobiosensor fabrication, developments in the field of smart nanomaterials, nano-enabling technologies, micro-nano hybrind platforms, and their applications in healthcare.

Low Power Active Electrode ICs for Wearable EEG Acquisition

Low Power Active Electrode ICs for Wearable EEG Acquisition
  • Author : Jiawei Xu,Refet Firat Yazicioglu,Chris Van Hoof,Kofi Makinwa
  • Publisher :Unknown
  • Release Date :2018-02-12
  • Total pages :125
  • ISBN : 9783319748634
GET BOOK HERE

Summary : This book presents fundamental requirements, electrical specification, and parameter tradeoffs of wearable EEG acquisition circuits, especially those compatible with dry electrodes for user-friendly recordings. The authors introduce active electrode, the most promising solution for dry electrodes-based EEG measurement. This architectural concept has been combined with various, innovative circuit design techniques to illustrate structured IC design methodologies for high performance EEG recording. This book also gives examples on the design, implementation and evaluation of three generations of active electrode ICs.

Implantable Bioelectronics

Implantable Bioelectronics
  • Author : Evgeny Katz
  • Publisher :Unknown
  • Release Date :2014-02-27
  • Total pages :472
  • ISBN : 9783527673162
GET BOOK HERE

Summary : Here the renowned editor Evgeny Katz has chosen contributions that cover a wide range of examples and issues in implantable bioelectronics, resulting in an excellent overview of the topic. The various implants covered include biosensoric and prosthetic devices, as well as neural and brain implants, while ethical issues, suitable materials, biocompatibility, and energy-harvesting devices are also discussed. A must-have for both newcomers and established researchers in this interdisciplinary field that connects scientists from chemistry, material science, biology, medicine, and electrical engineering.